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I. Introduction

In general, Quantum Field Theories in physics are ill defined because of the divergent ultraviolet

behaviour of this kind of theories. The infinities which appear in the calculation of the physical observables

make necessary a regularization prescription. Zeta-function regularization is one of the most important

regularization schemes used in Quantum Field Theory. It has been mainly utilized to properly define

divergent determinants, although in the last few years many applications have been found also in Gravity,

Strings and P-Branes Theories. When a Quantum Field Theory is regularized within this scheme, effective

quantities like the vacuum energy or the effective vertex and physical observables like the Green Functions

become the sum of a certain series. In many cases these series involve, among their coefficients, gamma,

polygamma and Riemann zeta functions of the regulator parameter and the physical constants of the

theory. For example, in the calculation of the Casimir energy over a Riemann sphere with Dirichlet or

Neumann boundary conditions, we find series like [2],

∞∑
l=n+1

∞∑
k=0

Γ(1− s+ c)
k!Γ(1− s− k + c)

akl−2s−k+b+c, (1)
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∞∑
k=0

Γ(1− s)
k!Γ(1− s− k)

[ζ(2s+ k − 1)− 1] (2)

and some other similar series involving also polygamma functions, where s is the regulator parameter

and the remaining coefficients are physical constants of the theory. The problem is that many of these

series can not be found in the table books (see for example [3] or [5]). The purpose of this paper is to

show a method for calculating a family of series of these kind and some other related to them and give a

list of series that may be added to the table books.

The starting point is the calculation of the value of the polylogarithmic functions Lin(x) [4] of degree

n > 1 in the point x = 1. These functions are defined by means of the recursive formula [4],

Lin+1(x) ≡
∫ x

0

Lin(t)
t

dt, |x| ≤ 1, n ∈ N| , (3)

where Li1(x) ≡ −log(1−x). With the change of variable t = 1− y in each one of the n integrals involved

in the above definition, the functions Lin+1(x) may be also defined by means of the formula

Lin+1(x) = (−1)n+1 d

dz
In(z, w, 1− x)

∣∣∣∣
z=0

, (4)

where In(z, w, x) are the multiple integrals defined by means of the recursive formula

In+1(z, w, x) ≡
∫ 1

x

dy

y − 1
In(z, w, y), 0 ≤ x ≤ 2, n = 1, 2, 3, .... (5)

and

I1(z, w, x) ≡
∫ 1

x

yz − yw

y − 1
dy. (6)

In particular, Lin+1(1) = (−1)n+1dIn(z, w, 0)/dz|z=0. In this paper we will deal only with In(z, w, 0) and

we simplify the notation by writing In(z, w) ≡ In(z, w, 0).

It is easy to show that the integrals In(z, w) are finite for Re(z) + n > 0 and Re(w) + n > 0 ∀ n ≥ 1

and that the convergence dominated theorem can be applied here to show that the derivation of (4) is

correct (anyway it will be shown at the end of section 2).

The evaluations, for x = 0, of the integrals In(z, w, x), its derivatives (16)-(17) and its generalization

(22)-(23) are the starting point for calculating series containing gamma, polygamma and Riemann zeta

functions (although some other functional and numerical series will be obtained also). Once the values

of these multiple integrals are known, the procedure is very simple: take one of these multiple integrals,

expand the integrand in power series of z (or w) or in power series of the integration variables after

suitable changes of variable, interchange series and integrals when it may be justified and match the

resulting series with the value of the integral.

In Section 2, the analytic calculation of the integrals In(z, w, x), its derivatives (16)-(17) and its

generalization (22)-(23) is performed for x = 0. A list of new series that have been obtained by the

method explained above is summarized in Section 3.
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II. Evaluation of the multiple integral In(z, w)

In order to calculate In(z, w), it will be necessary to solve before a recurrence of difference equations.

Lemma. The recurrence of difference equations

Fn(z)− Fn(z − 1) = −1
z
Fn−1(z), n ∈ N| , (7)

with F0(z) = 1, has the following particular solution,

Fn(z) ≡ 1
n!

Γ(z + 1)
dn

dzn

[
1

Γ(z + 1)

]
, z ∈ C/ \ Z−. (8)

Proof. It proceeds by induction over n. It is trivial for n = 1 using the recurrence formula of the

digamma function [1],

ψ(z + 1) = ψ(z) + z−1. (9)

Now, let us suppose that (8) verifies (7) for a given n ≥ 1. Then, taking the derivative of (7) with respect

to z and using (9), we find it is true for n+ 1. 2

Remark. Note that the functions Fn(z) are nothing but algebraic combinations of polygamma func-

tions of order ≤ n and the constants Fk(0), which will be used later, are just the coefficients of the Taylor

expansion of Γ(z + 1)−1 in powers of z.

Proposition. For −z /∈ N| and Re(z)+n > 0, the family of multiple integrals In(z, w) defined in (5)-(6)

for x = 0 is calculated by means of the recurrence

In(z, w) =
n∑

k=0

Ck (Fn−k(z)− Fn−k(w)) , (10)

where the functions Fn(z) are given in (8) and the coefficients Ck may be recurrently obtained from

Ck = −
k−1∑
i=0

CiFk−i(0), (11)

with C0 = −1

Proof. We define I0(z, w) = −1. Then, by direct substitution we may check that, as well as the functions

Fn(z) defined in (8), the integrals −In(z, 0) verify the recurrence (7). Now, we proceed by induction over

n to show that (10) is true for w = 0. For n = 1 we find that both −I1(z, 0) and F1(z) are particular

solutions of (7). But two different particular solutions of (7) may differ only by a constant which is fixed,

for example, in z = 0,

−I1(z, 0) = F1(z)− F1(0). (12)

Now, we suppose that (10), for w = 0, is true for a given n ≥ 1. Then, the integrals In+1(z, 0) verify the

difference equation

In+1(z, 0)− In+1(z − 1, 0) = −1
z

n∑
k=0

CkFn−k(z) (13)
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(Note that from (11) we have that
∑n

k=0 CkFn−k(0) = 0). According to Lemma 1, a particular solution

of this equation is
n∑

k=0

CkFn−k+1(z). (14)

Therefore,

In+1(z, 0) =
n∑

k=0

CkFn−k+1(z) + Cn+1, (15)

where Cn+1 is fixed, for example, in z = 0 and is given by (11). It can be introduced in the sum of eq.

(15) extending it up to n+ 1 because F0(z) = 1. Finally, subtracting In(z, 0) and In(w, 0), we find that

(10) holds. 2

Corollary 1. For Re(z)+n > 0 and −z /∈ N| , n,m ∈ N| , the family of multiple integrals Im
n (z, x) defined

recursively for 0 ≤ x ≤ 2 by

Im
n+1(z, x) ≡

∫ 1

x

dy

y − 1
Im
n (z, y), n ≥ 1, (16)

where

Im
1 (z, x) ≡

∫ 1

x

yzlogmy

y − 1
dy, (17)

is given, for x = 0, by

Im
n (z, 0) ≡ Im

n (z) =
n∑

i=0

Ci
dm

dzm
Fn−i(z). (18)

Proof. The integrals Im
n (z) may be written

Im
1 (z) =

∫ 1

0

xz
1logmx1

x1 − 1
dx1 (19)

and

Im
n (z) =

∫ 1

0

dx1

x1 − 1

∫ 1

x1

dx2

x2 − 1
....

∫ 1

xn−1

xz
nlogmxn

xn − 1
dxn for n > 1. (20)

Consider the function

g(x1, ..., xn) =
n∏

k=1

(1− xk)−1h(xn)(−log(xn))m (21)

with h(xn) = 1 if Re(z) ≥ 0 and h(xn) = xy0
n if Re(z) < 0, where Re(z) ∈ (y0, y1) and y0 > −n. The

function g(x1, ..., xn) is integrable and dominates the modulus of the integrand in (20) (or (19) for n = 1).

Therefore, taking the m-th derivative of both members of the equality (10) with respect to z and using

the dominated convergence theorem, the proof concludes. 2

Corollary 2. For Re(z) + n > k − 1, m ≥ k = 2, 3, 4... and −z /∈ N| , consider the family of multiple

integrals Im
n,k(z, x) defined recursively for 0 ≤ x ≤ 2 by

Im
n+1,k(z, x) ≡

∫ 1

x

dy

y − 1
Im
n,k(z, y), n > 1, (22)
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where

Im
1,k(z, x) ≡

∫ 1

x

yzlogmy

(y − 1)k
dy. (23)

Let us define Im
n,k(z) ≡ Im

n,k(z, 0). Then, for n = 1, 2, 3, ... Im
n,k(z) is given by the recurrence,

Im
n,k(z) =

1
k − 1

[
Im
n−1,k−1(z) + zIm

n,k−1(z − 1) +mIm−1
n,k−1(z − 1)

]
, (24)

where Im
n,1(z) = Im

n (z) is given in eq. (18) and Im
0,k(z) = 0.

Proof. It is just an integration by parts in (22) that needs the condition m ≥ k. In order to assure that

the above recurrence is well defined, the condition Re(z) + n > k − 1 is also necessary. 2

Corollary 3. For |z| < 1 and n ∈ N| ,
∞∑

k=1

(
n∑

i=0

CiF
(k)
n−i(0)

)
zk

k!
=

n∑
i=0

Ci (Fn−i(z)− Fn−i(0)) , (25)

where F (k)
n (z) is the k−th derivative of Fn(z). Moreover, this series is absolutely convergent.

Proof This series is nothing but the Taylor expansion of In(z, 0) on the point z = 0. Therefore, the

coefficients of this series are just the numbers Ik
n(0) given in (18). The result follows using also eq. (10).

On the other hand, it can be proved by induction on n, that |F (k)
n (0)| ≤ 3n(k + n)!/n!. Then, the series∑∞

k=0 F
(k)
n (0)zk/k! = Fn(z) is absolutely convergent for |z| < 1 and therefore, the series (25) is absolutely

convergent. 2

Remark. This formula is a generalization of the known power series with zeta function coefficients [1,

pg. 259, eq. 6.3.14]
∞∑

n=1

(−1)n+1ζ(n+ 1)zn − γ = ψ(z + 1), |z| < 1, (26)

which is obtained from (25) for n = 1 using F (k)
1 (0) ≡ −ψ(k)(1) = (−1)kk!ζ(k+ 1) for k ∈ N| [1, pg. 260,

eq. 6.4.2].

Corollary 4. For |z| < m, −z /∈ N| and n,m ∈ N| we have∫ ∞

m

Frac(x)dx
(z + x)n+2

=
(−1)n

(n+ 1)!
ψ(n)(1 + z) +

1
n(n+ 1)(z +m)n

+
1

(n+ 1)

m∑
k=1

1
(z + k)n+1

. (27)

Proof. We insert the integral representation of the zeta-function [1, pg. 807, eq. 23.2.9]

ζ(k + 1) =
m∑

l=1

1
lk+1

+
1

kmk
− (k + 1)

∫ ∞

m

Frac(x)dx
xk+2

, m = 1, 2, 3... (28)

in F (k)
1 (0) = (−1)kk!ζ(k + 1) in the left hand side of (25). Now, it is trivial to show that

∞∑
k=1

|z|k
∫ ∞

m

(k + 1)Frac(x)
xk+2

dx <∞ for |z| < m.
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Therefore, using the dominated convergence theorem we may interchange the sum in k and the integral

of (25). After straightforward algebra we obtain∫ ∞

m

Frac(x)dx
(z + x)2

= I(m) + ψ(1 + z)−
m∑

k=1

z

k(z + k)
− log

(
1 +

z

m

)
, (29)

where I(m) = ψ(m+ 1)−lnm+ γ. For z in a ball of centre zero and radius r < m, the n−th derivative

with respect to z of the function in the integrand in the left hand side of (29) can be easily bounded by

an integrable function. Therefore, applying the dominated convergence theorem we obtain (27). 2

Performing changes of variable in the integrals entering the equations (10), (18) and (24) and/or

expanding the integrands in power series of z, w or the integration variables, several new (and known)

functional and numerical series are obtained. These calculations take use of several versions of the

dominated convergence theorem to justify interchanges of series and integrals or derivations inside the

integrals, like we have illustrated in corollaries 1 and 4. Some examples of series calculated using these

techniques are written in the next section. We will use the following notation: ζ(z) is the Riemann

zeta-function, γ is the Euler’s constant, ψ(n)(z) is the n−th derivative of the digamma function, F (k)
n (z)

is the k−th derivative of the functions Fn(z), (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol

and γk are the generalized γ constants,

γk = lim
m→∞

{
m∑

n=1

logkn

n
− logk+1m

k + 1

}
. (30)

III. List of new series

1. Series containing binomial coefficients

Expanding the denominator (y − 1)−k in eq. (23) for x = 0 in power series of y and using (18) and (24),

we obtain, for −z /∈ N| , m ≥ k ∈ N| ,

1.1
∞∑

n=0

(
n+ k − 1

n

)
(−1)m+k

(z + n+ 1)m+1
=

1
m!

Ψm
k (z),

where the functions Ψm
k (z) are defined by means of the recursive formula

Ψm
k (z) =

1
k − 1

[
zΨm

k−1(z − 1) +mΨm−1
k−1 (z − 1)

]
, k ≥ 2 (31)

and Ψm
1 (z) = ψ(m)(z + 1).

If we expand the term (z+n+1)−(m+1) in the above series in power series of z we obtain, for m ≥ k ∈ N|

and |z| < 1,

1.2
∞∑

l=0

∞∑
n=0

(
n+ k − 1

n

)
(−1)l(l +m)!
l!(n+ 1)m+l+1

zl = (−1)m+kΨm
k (z).
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This formula is a generalization of the m−th derivative of the known power series with zeta functions

coefficients (26). It is obtained from formula 1.2 for k = 1.

If we write
∫∞

m
(z + x)−(n+2)Frac(x)dx =

∑∞
k=m

∫ 1

0
(z + k + x)−(n+2)xdx, after a straightforward algebra

and using (27) we obtain, for Re(z) +m > 1, n,m ∈ N| ,

1.3
∞∑

k=m

∞∑
j=0

(
n+ j + 1

j

)
(−1)j

j + 2
1

(k + z)n+j+2
=

=
(−1)n

(n+ 1)!
ψ(n)(z + 1) +

1
n(n+ 1)(m+ z)n

+
1

n+ 1

m∑
k=1

1
(k + z)n+1

.

2. Series containing gamma functions

If we set m = 1 in eqs. (16)-(17) for x = 0, perform the change of variable y = 1 + t in eq. (17), expand

(1+t)z and log(1+t) in power series of t and use eq. (18), we obtain, for Re(z)+n > 0, n ∈ N| , 1+z /∈ N| ,

2.1
∞∑

k=0

∞∑
m=1

Γ(k − z)
m(k +m)nk!

= (−1)n+1Γ(−z)
n∑

k=0

CkF
(1)
n−k(z).

If we set m = k = 2 in eqs. (22)-(23) for x = 0, perform the change of variable y = 1 + t in eq. (23),

expand (1 + t)z and each log(1 + t) in power series of t and use eqs. (18) and (24), we obtain, for

Re(z) + n > 0, n ∈ N| , 1 + z /∈ N| ,

2.2
∞∑

l=1

∞∑
m=1

∞∑
k=0

Γ(k − z)
lmk!(l +m+ k − 1)n

=

= −(−1)nΓ(−z)
n−1∑
k=0

Ck

(
F

(2)
n−k−1(z) + zF

(2)
n−k(z − 1) + 2F (1)

n−k(z − 1)
)
.

3. Series containing digamma functions

If we set m = n = 1 in eqs. (16)-(17) for x = 0, perform the change of variable y = 1 + t in eq. (17),

expand log(1 + t) in power series of t and use eqs. (10) for n = 1 and (18), we obtain, for 1− z /∈ N| ,

3.1
∞∑

n=1

n−1∑
k=0

(
n− 1
k

)
(−1)kψ(k + z + 1) + γ

n(k + z)
= ψ(z)ψ(1)(z)− 1

2
ψ(2)(z).

Expanding (y − 1)−1 in eq. (6) for x = 0 in power series of y and after a straightforward algebra and

using [5, pg. 655, eq. 2], we obtain for 1− z, 1− w /∈ N| ,

3.2
∞∑

n=0

(n+ w)ψ(n+ z + 1)− (n+ z)ψ(n+ w + 1)
(n+ z)(n+ w)

=

=
1
2

(
ψ2(w)− ψ2(z)− ψ(1)(w) + ψ(1)(z)

)
.

7



If se set w = z+ 1 in the above formula and use [1, pg. 258, eq. 6.3.5] and [5, pg. 655, eq. 2], we obtain,

for 1− z /∈ N| ,

3.3
∞∑

n=0

ψ(n+ z + 1)
(n+ z)(n+ z + 1)

= ψ(1)(z) +
ψ(z)
z

.

4. Series containing gamma and digamma functions

Taking the derivative of formula 2.1 with respect to z for n = 1 and using [5, pg. 655, eq. 2], we obtain,

for Re(z) > −1, z /∈ N| ,

4.1
∞∑

k=1

(ψ(k + 1) + γ)ψ(k − z)Γ(k − z)
kk!

=

= Γ(−z)
(
ψ(−z)(ψ(1)(z + 1)− ζ(2))− ψ(2)(z + 1)

)
.

5. Series containing polygamma functions

If we perform the change of variable y = 1+ t in eq. (6) for x = w = 0, expand (1+ t)z in power series of

t, take the m derivative with respect to z and use eq. (18), we obtain, for Re(z) + n > 0, m+ 1, n ∈ N| ,

z /∈ N| ,

5.1
∞∑

k=1

1
(−k)nk!

dmΓ(k − z)
d(−z)m

=
dm

dzm

[
Γ(−z)

n∑
k=0

Ck (Fn−k(z)− Fn−k(0))

]
.

If we set n = m = 1 in eq. (16) for x = 0, expand (y − 1)−1 in power series of y in the integral (17),

integrate by parts in this integral and use eq. (10) for n = 1 and eq. (18), we obtain, for 1− z /∈ N| ,

5.2
∞∑

n=0

(n+ z)ψ(1)(n+ z + 1)− ψ(n+ z + 1)− γ

(n+ z)2
=

1
2
ψ(2)(z)− (γ + ψ(z))ψ(1)(z).

6. Series containing Pochhammer symbols

Setting m = k = 2 in eq. (23) for x = 0, performing the change of variable y = 1 + t, expanding each

log(1 + t) in power series of t and using [5, pg. 611, eq. 45] and eqs. (18) and (24), we obtain, for

Re(z) > −1,

6.1
∞∑

n=1

∞∑
m=1

(n+m− 2)!
nm(z + 1)n+m−1

= zψ(2)(z) + 2ψ(1)(z).

Setting m = 0 in formula 5.1, subtracting this formula for variable z from itself for variable −z and using

[1, pg. 256, eq. 6.1.22], we obtain, for |z| < n, n ∈ N| ,

6.2
∞∑

m=1

(z)m − (−z)m

mnm!
= (−1)n

n∑
k=0

Ck (Fn−k(−z)− Fn−k(z)) .
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If we subtract I1
2 (z−1) from I1

2 (z), integrate by parts yz−1logy, perform the change of variable y = 1+ t,

expand log(1 + t) in power series of t and use eqs. (10) and (18), we obtain, for −z /∈ N| ,

6.3
∞∑

n=1

(n− 1)!
n(z + 1)n

= ψ(1)(z)− 1
z2
.

7. Other series

Inserting the representation [1, pg. 807 eq. 23.2.5] of the zeta-function in the left-hand side of eq. (25)

for n = 1 and using the identity log(1− z) =
∑∞

k=1 z
k/k, we obtain, for |z| < 1,

7.1
∞∑

n=1

∞∑
k=0

(−1)k

k!
γkn

kzn = log(1− z)− γ − ψ(1− z).

Setting z = 0 and m = 2 in eq. (16) for x = 0, performing the change of variable y = 1 + t in (17),

expanding each log(1 + t) in power series of t and using eq. (10) for n = 1 and eq. (18), we obtain, for

n ∈ N| ,

7.2
∞∑

k=1

∞∑
m=1

(−1)n

km(k +m)n
=

n∑
k=0

CkF
(2)
n−k(0).

Many other series may be calculated by means of similar manipulations of formulas (10), (18) and

(24) for x = 0. All them, as well as the series listed above, will result in algebraic combinations of gamma

and polygamma functions.
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