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ABSTRACT

Several orthogonal polynomials have limit forms in which Hermite polynomials show

up. Examples are limits with respect to certain parameters of the Jacobi and Laguerre

polynomials. In this paper we are interested in more details of these limits and we give

asymptotic representations of several orthogonal polynomials in terms of Hermite poly-

nomials. In fact we give finite exact representations that have an asymptotic character.

From these representations the well-known limits can be derived easily. Approxima-

tions of the zeros of the Gegenbauer polynomials Cγ
n(x) and Laguerre polynomials

Lα
n(x) are derived (for large values of γ and α, respectively) in terms of zeros of

the Hermite polynomials and compared with numerical values. We also consider the

Jacobi polynomials and the so-called Tricomi-Carlitz polynomials.
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1. Introduction
It is well known that the Hermite polynomials

Hn(x) = n!
bn/2c∑
k=0

(−1)k

k! (n− 2k)!
(2x)n−2k (1.1)

play a crucial role in certain limits of the classical orthogonal polynomials. For example,
the Gegenbauer polynomials Cγ

n(x), which are defined by the generating function

(1− 2xw + w2)−γ =
∞∑

n=0

Cγ
n(x)wn, −1 ≤ x ≤ 1, |w| < 1, (1.2)
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have the well-known limits (cf. Temme (1996, p. 168, 169))

lim
γ→∞

Cγ
n(x)

Cγ
n(1)

= xn, (1.3)

lim
γ→∞

γ−n/2Cγ
n(x/

√
γ ) =

1
n!
Hn(x). (1.4)

These limits give insight in the location of the zeros of Cγ
n(x) for large values of the

order γ. The first limit shows that the zeros of Cγ
n(x) tend to the origin if the order

γ tends to infinity. The second limit is more interesting; it gives the relation with the
Hermite polynomials if the order becomes large and the argument x is properly scaled.

For the Laguerre polynomials, which are defined by the generating function

(1− w)−α−1e−wx/(1−w) =
∞∑

n=0

Lα
n(x)wn, α, x ∈ C, |w| < 1, (1.5)

similar results are

lim
α→∞

α−nLα
n(αx) =

(1− x)n

n!
, (1.6)

lim
α→∞

α−n/2Lα
n(x

√
α + α) =

(−1)n 2−n/2

n!
Hn(x/

√
2 ). (1.7)

This again gives insight in the location of the zeros for large values of the order α, and
the relation with the Hermite polynomials if the order becomes large and x is properly
scaled.

In this paper we describe the asymptotics that governs the above limits with the
Hermite polynomials. We consider large values of orders α and γ, and obtain asymptotic
representations of Cγ

n(x) and Lα
n(x) from which the above limits can be derived as special

cases.

For large values of the degree n and fixed values of the order α the Laguerre poly-
nomials Lα

n(x) are considered in Frenzen & Wong (1988); see also Wong (1989).
In our present paper we keep n fixed, and we do not use the complicated analysis of
uniform expansions. Our results are rather simple to derive, and can be considered as
first approximations before considering uniform expansions.

We also discuss Tricomi-Carlitz polynomials, which have been considered recently
by Goh & Wimp (1994) and (1997). These polynomials are related with Laguerre
polynomials Lα

n(x) with negative order α.

In the following section we give the principles of the Hermite-type asymptotic ap-
proximations used in this paper. In later sections we give expansions for the Gegenbauer,
the Laguerre, the Jacobi and the Tricomi-Carlitz polynomials. The same method can
be used for many other classes of polynomials.
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2. Expansions in terms of Hermite polynomials
The Hermite polynomials follow from the generating function

e2xw−w2
=

∞∑
n=0

Hn(x)
n!

wn, x, w ∈ C, (2.1)

which gives the Cauchy-type integral

Hn(x) =
n!
2πi

∫
C
e2xz−z2

z−n−1 dz, (2.2)

where C is a circle around the origin and the integration is in positive direction.

2.1. An expansion in terms of Hermite polynomials

Many special functions satisfy a relation in the form of a generating series, which usually
has the form

F (x,w) =
∞∑

n=0

pn(x)wn, (2.3)

F is a given function, which is analytic with respect to w in a domain that contains
the origin, and pn is independent of w. Examples are the generating functions given in
(1.2), (1.5) and (2.1).

The relation (2.3) gives for the special function pn the Cauchy-type integral

pn(x) =
1

2πi

∫
C
F (x,w)

dw

wn+1
, (2.4)

where C is a circle around the origin inside the domain where F is analytic (as a function
of w).

We write
F (x,w) = eAw−Bw2

f(x,w), (2.5)

where A and B do not depend on w, and can be chosen arbitrarily. This gives

pn(x) =
1

2πi

∫
C
eAw−Bw2

f(x,w)
dw

wn+1
. (2.6)

Because f is also analytic (as a function of w), we can expand

f(x,w) =
∞∑

k=0

ckw
k (2.7)

and substitute this in (2.6). By (2.2), the result is the finite expansion

pn(x) = zn
n∑

k=0

ck
zk

Hn−k(ζ)
(n− k)!

, z =
√
B , ζ =

A

2
√
B
, (2.8)
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because terms with k > n do not contribute in the integral in (2.6). The quantities A
and B may depend on x, and if B happens to be zero for a special x−value x0, say, we
write

pn(x0) = An
n∑

k=0

ck
Ak (n− k)!

. (2.9)

In the examples considered in the following sections, the choice of A and B is based
on our requirement that c1 = c2 = 0. This happens if we take

A = p1(x), B = 1

2
p2
1(x)− p2(x), (2.10)

if we assume that F (x, 0) = p0(x) = 1 (which implies c0 = 1). This is easily verified
from (2.3) by writing

ln[F (x,w)] = p1(x)w +
[
p2(x)− 1

2
p2
1(x)

]
w2 +O(w3), w → 0.

This choice of A and B makes the matching at the origin of the exponential function in
(2.5) with F (x,w) as best as possible.

We will show in later sections that for several interesting cases the finite sum in
(2.8) gives the desired asymptotic representations, from which well-known limits can be
derived. The special choice of A and B is crucial for obtaining asymptotic properties.

3. Gegenbauer polynomials
¿From (1.2) we obtain the following Cauchy-type integral

Cγ
n(x) =

1
2πi

∫
C

dw

(1− 2xw + w2)γ wn+1
, (3.1)

where C is a circle around the origin with radius less than unity. Initially we assume that
x ∈ (−1, 1), but later we do not need this restriction. We assume that (1− 2xw+w2)γ

assumes real values for real values of x,w and γ.
We have

Cγ
0 (x) = 1, Cγ

1 (x) = 2γx, Cγ
2 (x) = 2γ(γ + 1)x2 − γ. (3.2)

Hence, by (2.10),
A = 2xγ, B = γ(1− 2x2).

It follows that

Cγ
n(x) = zn

n∑
k=0

ck
zk

Hn−k(ζ)
(n− k)!

, (3.3)

where
z =

√
B =

√
γ(1− 2x2) , ζ =

A

2
√
B

=
xγ

z
.
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The coefficients follow from (cf. (2.7))

f(x,w) = e−2γxw+γ(1−2x2)w2
(1− 2xw + w2)−γ =

∞∑
k=0

ckw
k. (3.4)

We have

c0 = 1, c1 = c2 = 0, c3 = 2

3
γx(4x2 − 3), c4 = 1

2
γ
[
1 + 8x2(x2 − 1)

]
.

Higher coefficients follow from the recursion relation

kck = 2x(k − 1)ck−1 − (k − 2)ck−2 + 2γx(4x2 − 3)ck−3 + 2γ(1− 2x2)ck−4. (3.5)

This relation follows from substituting the Maclaurin series of f (see (3.4)) into the
differential equation

(1− 2xw + w2)
df

dw
= 2γ(−3x+ 4x3 + w − 2x2w)w2 f.

In (3.3) no restrictions on x and γ are needed, although ζ and 1/z become infinite
if x2 = 1

2 ; this singularity is removable because of the term zn in front of the series. It
follows from (2.9) that, if x2

0 = 1/2, we have

Cγ
n(x0) = (2x0γ)n

n∑
k=0

ck
(2x0γ)k (n− k)!

, (3.6)

where the ck are as in (3.4) and (3.5) with x = x0.

3.1. Asymptotic properties of the expansion (3.3)

To verify the asymptotic character of (3.3), we observe that the sequence {Φk} with
Φk = ck/z

k has the following (somewhat irregular ∗)) asymptotic structure:

Φk = O
(
γbk/3c−k/2

)
, k = 0, 1, 2, . . . , (3.7)

where bxc means the integer part of x.
More important, the successive Hermite polynomials Hn(ζ),Hn−1(ζ), . . . , in (3.3)

are of lower degree with respect to γ. This means that, using (3.7),

ck
zk
Hn−k(ζ) = O

(
γn/2+bk/3c−k

)
, γ →∞.

This gives the asymptotic nature of the terms in (3.3) for large values of γ, with x

and n fixed. We can also estimate the remainder.

∗) It is irregular because, for example, Φ12 has the same estimate O(γ−2) as Φ10, whereas Φ11,

has the estimate O(γ−5/2).
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Let, for n0 = 0, 1, . . . , n,, the remainder ∆n0 be defined by

∆n0 := γ−n

[
Cγ

n(x)− zn
n0∑

k=0

ck
zk

Hn−k(ζ)
(n− k)!

]
= γ−n zn

n∑
k=n0+1

ck
zk

Hn−k(ζ)
(n− k)!

.

Then we can estimate ∆n0 for large γ. For example, for n = 20,we have the following
results:

n0 = 0, 1, 2, ∆n0 = O
(
γ−2

)
,

n0 = 3, ∆n0 = O
(
γ−3

)
,

n0 = 4, 5, ∆n0 = O
(
γ−4

)
,

n0 = 6, ∆n0 = O
(
γ−5

)
,

n0 = 7, 8, ∆n0 = O
(
γ−6

)
,

n0 = 9, ∆n0 = O
(
γ−7

)
,

n0 = 10, 11, ∆n0 = O
(
γ−8

)
,

n0 = 12, ∆n0 = O
(
γ−9

)
,

n0 = 13, 14, ∆n0 = O
(
γ−10

)
,

n0 = 15, ∆n0 = O
(
γ−11

)
,

n0 = 16, 17, ∆n0 = O
(
γ−12

)
,

n0 = 18, ∆n0 = O
(
γ−13

)
,

n0 = 19, ∆n0 = O
(
γ−14

)
,

n0 = 20, ∆n0 = 0.

In fact, we have
∆n0 = O

(
γb(n0+1)/3−n0−1c

)
, as γ →∞.

For proofs of the asymptotic properties we refer to the following subsection.
It is not difficult to verify that the limits given in (1.3) and (1.4) follow from (3.3).

3.2. Proofs of the asymptotic properties

To prove the asymptotic properties of the expansion we first show that the coefficients
ck in formula (3.4) satisfy

ck = O
(
γbk/3c

)
, γ →∞. (3.8)

The proof follows by induction with respect to k, by using the recurrence relation (3.5),
that we write in the form

ck = ack−1 + bck−2 + cγck−3 + dγck−4, (3.9)

where a, b, c, d are functions of k and x generically different from 0 (a 6= 0 for x 6= 0,
b 6= 0 ∀x, c 6= 0 for x 6= 0 and x 6= ±

√
3/2 and d 6= 0 for x 6= ±1/

√
2).
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i) From the coefficients given after (3.4) it follows that (3.8) is true for k = 0, 1, 2, 3, 4.
ii) Suppose that (3.8) is true for a given k ≥ 4. Then, using (3.9),

ck+1 =aO(γbk/3c) + bO(γb(k−1)/3c) + cO(γ1+b(k−2)/3c) + dO(γ1+b(k−3)/3c) =

(a+ d)O(γbk/3c) + bO(γb(k−1)/3c) + cO(γb(k+1)/3c) = cO(γb(k+1)/3c).

Therefore, (3.8) is proved, and by using Φk = ck/z
k and z = O(γ1/2), it follows that

(3.7) holds true.
The above derivation fails when c = 0. Certainly, it does not fail, we should say:

the estimate of the order in γ can be improved when c = 0. That is, when x = 0 or
x = ±

√
3/2, we can show

ck = O(γbk/4c). (3.10)

In this case the recurrence (3.5) reads

ck = ack−1 + bck−2 + dγck−4, (3.11)

(where a is also zero if x = 0, but never mind). We can repeat the steps i), ii) in the
above induction proof:
i) is true for k = 0, 1, 2, 3, 4 (c3 = 0 for x = 0 or x = ±

√
3/2).

ii) Suppose (3.10) is true for k ≥ 4. Then,

ck+1 =aO(γbk/4c) + bO(γb(k−1)/4c) + dO(γ1+b(k−3)/4c) =

aO(γbk/4c) + bO(γb(k−1)/4c) + dO(γb(k+1)/4c) = dO(γb(k+1)/4c).

And so, (3.10) is proved. Therefore, for c = 0,

Φk = O(γbk/4c−k/2), k = 0, 1, 2, . . . (3.12)

This derivation of (3.10) fails when d = 0. But in this case c 6= 0 and (3.7) holds.

3.3. Approximating the zeros

When computing approximations of the zeros of the Gegenbauer polynomials for large
values of γ we start with the zeros of the Hermite polynomial Hn(ζ) in (3.3).

Let gn,m, hn,m be the m−th zero of Cγ
n(x), Hn(x), respectively, m = 1, 2, . . . , n.

Then, for given γ and n we take the relation for ζ used in (3.3) to compute a first
approximation of gn,m by writing

γgn,m√
γ(1− 2g2

n,m)
∼ hn,m.

Inverting this relation we obtain

gn,m ∼ hn,m√
γ + 2h2

n,m

, m = 1, 2, . . . , n. (3.13)



8

The accuracy is rather limited, unless γ is very large. For example, if γ = 1000, n =
20, the best relative accuracy in the zeros is about 1/1000, but the worst result (for
the largest zero) is 0.016. In the next section we give more details on how to obtain
better approximations from the representation like (3.3) for the case of the Laguerre
polynomials.

4. Laguerre polynomials
We take as generating function (see (1.5))

F (x,w) = (1 + w)−α−1ewx/(1+w) =
∞∑

n=0

pn(x)wn, (4.1)

with
pn(x) = (−1)nLα

n(x). (4.2)

We have

Lα
0 (x) = 1, Lα

1 (x) = α+ 1− x, Lα
2 (x) = 1

2
[(α+ 1)(α+ 2)− 2(α+ 2)x+ x2].

This gives
A = x− α− 1, B = x− 1

2
(α+ 1).

Writing

f(x,w) = F (x,w) e−Aw+Bw2
=

∞∑
k=0

ckw
k, (4.3)

we obtain

c0 = 1, c1 = c2 = 0, c3 = 1

3
(3x− α− 1), c4 = 1

4
(−4x+ α+ 1).

and the recursion relation

kck = −2(k − 1)ck−1 − (k − 2)ck−2 + (3x− α− 1)ck−3 + (2x− α− 1)ck−4. (4.4)

This relation follows from substituting the Maclaurin series of f into the differential
equation

(1 + w)2
df

dw
= [3x− α− 1 + (2x− 1− a)w] w2 f.

It follows that

Lα
n(x) = (−1)n zn

n∑
k=0

ck
zk

Hn−k(ζ)
(n− k)!

, (4.5)

where
z =

√
x− (α+ 1)/2 , ζ =

x− α− 1
2z

. (4.6)
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The representation in (4.5) holds for n = 0, 1, 2, . . ., and all complex values of x and
α. If z = 0 it is more convenient to write

Lα
n(x0) = xn

0

n∑
k=0

(−1)k ck
xk

0 (n− k)!
,

where ck follow from (4.3) and (4.4), with x = x0 = 1
2 (α+ 1).

The representation in (4.5) has an asymptotic character for large values of |α|+ |x|;
the degree n should be fixed. To verify the asymptotic character, we write γ = α+1, x =
γξ. We observe that the sequence {Φk} with Φk = ck/z

k has the following asymptotic
structure:

Φk = O
[
γ−bk/3c−k/2

]
, k = 0, 1, 2, . . . . (4.7)

as γ → ∞. The derivation of (4.7) runs as in the case of the Gegenbauer polynomials
(Section 3.1). The only difference is that, in this case in the recurrence relation (3.9)
we have c = 3ξ − 1 and d = 2ξ − 1. Therefore, condition c 6= 0 reads ξ 6= 1/3 and d 6= 0
reads ξ 6= 1/2. Also, in this case a never vanishes.

Again, the successive Hermite polynomials Hn(ζ),Hn−1(ζ), . . . , in (4.5) are of lower
degree with respect to γ. This, together with (4.7), explains the asymptotic nature of
the representation in (4.4) for large values of |α|+ |x|, with n fixed.

It is not difficult to verify that the limits given in (1.6) and (1.7) follow from (4.5).

4.1. Approximating the zeros

Let ln,m, hn,m be the m−th zero of Lα
n(x), Hn(x), respectively, m = 1, 2, . . . , n. Then,

for given α and n we use the relation for ζ in (4.6) to compute a first approximation of
ln,m by writing

ln,m − α− 1

2
√
ln,m − 1

2 (α+ 1)
∼ hn,m.

Inverting this relation we obtain

ln,m ∼ α+ 1 + 2h2
n,m + hn,m

√
2(α+ 1) + 4h2

n,m . (4.8)

In Calogero (1978) the following asymptotic result has been given:

ln,m = α+
√

2αhn,m + 1

3
(1 + 2n+ 2h2

n,m) +O
(
α−

1
2

)
, (4.9)

as α → ∞. This result does not follow from (4.8) but we can derive (4.9) from (4.5).
We give a few steps of this method.

Using the recursion relations

2nHn−1(x) = 2xHn(x)−Hn+1(x) =
d

dx
Hn(x),
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we obtain

Hn−3(ζ) =
1

4n(n− 1)(n− 2)
[
(2ζ2 − n+ 1)H ′

n(ζ)− 2ζnHn(ζ)
]
. (4.10)

Hence, the first two nonvanishing terms in (4.5) yield

1
n!
Hn(ζ) +

c3
(n− 3)!z3

Hn−3(ζ) =
1
n!

[F (ζ)Hn(ζ) +G(ζ)H ′
n(ζ)] , (4.11)

where

F (ζ) = 1− ζnc3
2z3

, G(ζ) =
c3(2ζ2 − n+ 1)

4z3
,

with c3 given after (4.3); x can be written as a function of ζ by inverting the relations
used in (4.6), that is,

x = α+ 1 + 2ζ2 + ζ
√

2(α+ 1) + 4ζ2 . (4.12)

Now, let h be a zero of Hn(ζ). To solve F (ζ)Hn(ζ) + G(ζ)H ′
n(ζ) = 0, we substitute

ζ = h+ ε and expand in powers of ε. Neglecting powers εn, n ≥ 2, we obtain

[G(h) + ε{F (h) +G′(h)}]H ′
n(h) + εG(h)H ′′

n(h) =

[G(h) + ε{F (h) +G′(h) + 2hG(h)}]H ′
n(h) ∼ 0,

where we have replaced H ′′
n(h) with 2hH ′

n(h) by using the differential equation of the
Hermite polynomials.

Solving for ε we find

ε ∼ −G(h)
F (h) +G′(h) + 2hG(h)

,

and expanding the result for large α we obtain

ε = 1

3

√
2

α
(n− 1− 2h2) +O

(
α−1

)
. (4.13)

Substituting ζ = h + ε with the approximation (4.13) in (4.12) and expanding again,
we find

x = α+
√

2αh+ 1

3
(1 + 2n+ 2h2) +O

(
α−

1
2

)
, α→∞,

which is the same as Calogero’s result (4.9).
In Table 4.1 we show for n = 10 the relative accuracy in the approximation (4.9) for

several values of α. That is, we show∣∣∣∣∣ l10,m − l̃10,m

l10,m

∣∣∣∣∣ , m = 1, 2, . . . , 10,
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where l̃10,m are the approximations obtained by (4.9).

α 10 50 100 250 500 1000
m

1 .17e+1 .11e-0 .35e-1 .77e-2 .25e-2 .84e-3
2 .73e-0 .63e-1 .21e-1 .49e-2 .16e-2 .56e-3
3 .34e-0 .36e-1 .12e-1 .30e-2 .10e-2 .36e-3
4 .15e-0 .18e-1 .65e-2 .16e-2 .57e-3 .20e-3
5 .40e-1 .54e-2 .20e-2 .52e-3 .18e-3 .64e-4
6 .25e-1 .41e-2 .16e-2 .45e-3 .17e-3 .60e-4
7 .67e-1 .12e-1 .48e-2 .13e-2 .50e-3 .18e-3
8 .95e-1 .18e-1 .77e-2 .22e-2 .83e-3 .31e-3
9 .12e-0 .24e-1 .11e-1 .31e-2 .12e-2 .45e-3
10 .13e-0 .31e-1 .14e-1 .42e-2 .16e-2 .62e-3

Table 4.1. Relative accuracy in computed zeros of Lα
10(x) by using ap-

proximation (4.9).

5. The Tricomi-Carlitz polynomials
The Tricomi-Carlitz polynomials are defined by

t(α)
n (x) =

n∑
k=0

(−1)k

(
x− α

k

)
xn−k

(n− k)!
. (5.1)

We have the relation with the Laguerre polynomials:

t(α)
n (x) = (−1)n L(x−α−n)

n (x). (5.2)

The polynomials satisfy the recurrence

(n+ 1)t(α)
n+1(x)− (n+ α) t(α)

n (x) + x t
(α)
n−1(x) = 0, n ≥ 1, (5.3)

with initial values t(α)
0 (x) = 1, t(α)

1 (x) = α. A few other values are

t
(α)
2 (x) = 1

2

(
α+ α2 − x

)
, t

(α)
3 (x) = 1

6

(
2α+ 3α2 + α3 − 2x− 3xα

)
. (5.4)

Tricomi (1948) introduced the polynomials. He observed that {t(α)
n (x)} is not a system

of orthogonal polynomials, the recurrence relations failing to have the required form (cf.
Szegö (1975, page 43)). However, Carlitz (1958) discovered that if one sets

f (α)
n (x) = xn t(α)

n (x)(x−2), (5.5)

then {f (α)
n (x)} satisfies

(n+ 1)f (α)
n+1(x)− (n+ α)x f (α)

n (x) + f
(α)
n−1(x) = 0, n ≥ 1, (5.6)
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with initial values f (α)
0 (x) = 1, f (α)

1 (x) = αx. A few other values are

f
(α)
2 (x) = 1

2

[
α(1 + α)x2 − 1

]
, f

(α)
3 (x) = 1

6
x
(
−2 + 2αx2 − 3α+ 3α2x2 + α3x2

)
.

There is a generating function for f (α)
n (x):

F (x,w) = ew/x+(1−αx2)/x2 ln(1−xw) =
∞∑

n=0

f (α)
n (x)wn. |wx| < 1. (5.7)

If x = 0 this reduces to

e−
1
2 w2

=
∞∑

n=0

f
(α)
2n (0)w2n,

giving
f

(α)
2n (0) = (−1)n 2−n/n!, f

(α)
2n+1(0) = 0, n = 0, 1, 2, . . . .

Carlitz proved that for α > 0, {f (α)
n (x)} satisfies the orthogonality relation∫ ∞

−∞
f (α)

m (x) f (α)
n (x) dψ(α)(x) =

2 eα

(n+ α)n!
δmn, (5.8)

where ψ(α)(x) is the step function whose jumps are

dψ(α)(x) =
(k + α)k−1 e−k

k!
at x = xk = ± 1√

k + α
, k = 0, 1, 2, . . . . (5.9)

The values xk play a special role in the generating function because for these x−values
we have

ew/xk (1− xkw)k =
∞∑

n=0

f (α)
n (xk)wn,

and now the series converges for all values of w.
For further generalizations of the Tricomi-Carlitz polynomials the reader is referred

to Askey & Ismail (1984) and Chihara & Ismail (1982); Chihara (1978) gives a
brief treatment of the polynomials t(α)

n (x). Goh & Wimp (1994 and 1997) establish
the asymptotic behavior of the Tricomi-Carlitz polynomials and discuss their zero dis-
tribution. They observe that the polynomials fn(x/

√
α ) have all zeros in the interval

[−1, 1]. They use in their second paper a probabilistic approach for improving their
earlier results concerning the asymptotic distribution of the zeros of the polynomials
f

(α)
n (x). Saddle point methods are used to study the asymptotics for f (α)

n (x) in the
complex plane.

In this section we use the method of Section 2 for obtaining an asymptotic represen-
tation (for large values of α) of the Tricomi-Carlitz polynomials in terms of the Hermite
polynomial.
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The role of the Hermite polynomials can be shown by observing that

lim
α→∞

f (α)
n

(
x
√

2
α

)
=

2−n/2

n!
Hn(x). (5.10)

This follows from the results given below.

5.1. Hermite-type representation of the Tricomi-Carlitz polynomials

¿From the first polynomials given after (5.6) we obtain

A = αx, B = 1

2
(1− αx2).

Hence,

f (α)
n (x) = zn

n∑
k=0

ck
zk

Hn−k(ζ)
(n− k)!

, (5.11)

where
z =

√
(1− αx2)/2 , ζ =

αx√
2(1− αx2)

.

For the special value x = x0 that satisfies αx2
0 = 1, it is better to write an expansion of

the form (2.9).
The coefficients ck in (5.11) are are defined by

f(x,w) = F (x,w) e−Aw+Bw2
=

∞∑
k=0

ckw
k.

where F (x,w) is given in (5.7). We have

c0 = 1, c1 = c2 = 0, c3 = 1

3
x(αx2 − 1), c4 = 1

4
x2(1− αx2).

The coefficients can easily be computed from the differential equation

(xw − 1)
df

dw
= x(1− αx2)w2 f,

which gives the recursion relation

kck = x(k − 1)ck−1 + x(αx2 − 1)ck−3, k = 3, 4, . . . . (5.12)

Observe that c0 = f(0, w) = 1, and that ck = 0, k ≥ 1 if x = 0.
To verify the asymptotic character of (5.11), we observe that the sequence {Φk} with

Φk := ck/z
k has the following asymptotic structure:

Φk = O
[
α−bk/3c−k/2

]
, k = 0, 1, 2, . . . ,
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as α→∞, x 6= 0. The main step in verifying this estimate is the proof of

ck = O
(
αbk/3c

)
, α→∞,

Which follows from and that the successive Hermite polynomials Hn(ζ),Hn−1(ζ), . . . ,
in (5.11) are of lower degree with respect to α. This explains the asymptotic nature of
the representation in (5.11) for large values of α, with x 6= 0 and n fixed.

Observe that the limit in (5.10) indeed follows from (5.11).

5.2. Approximating the zeros

Let fn,m, hn,m be the m−th zero of Lα
n(x), Hn(x), respectively, m = 1, 2, . . . , n. Then,

for given α and n we use the relation for ζ in (5.11) to compute a first approximation
of fn,m by writing

αfn,m√
2(1− αf2

n,m)
∼ hn,m.

Inverting this relation we obtain

fn,m ∼ hn,m

√
2

α2 + 2αh2
n,m

. (5.13)

We can use the method of §4.1 for obtaining better approximations.

6. Jacobi polynomials

We give a few steps for the Jacobi case, which is quite complicated because of the many
parameters involved. Consider the generating function

F (x,w) =
2α+β

R
(1− w +R)−α(1 + w +R)−β =

∞∑
n=0

P (α,β)
n (x)wn, (6.1)

where
R =

√
1− 2xw + w2 .

We have

P
(α,β)
0 (x) = 1,

P
(α,β)
1 (x) = 1

2
[α− β + (α+ β + 2)x],

P
(α,β)
2 (x) = 1

8
{(1 + α)(2 + α) + (1 + β)(2 + β)− 2(α+ 2)(β + 2)+

2x[(1 + α)(2 + α)− (1 + β)(2 + β)]+

x2[(1 + α)(2 + α) + (1 + β)(2 + β) + 2(α+ 2)(β + 2)]},
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from which A and B follow:

A = 1

2
[α− β + (α+ β + 2)x],

B = 1

8
[α+ β + 4 + 2x(β − α)− x2(3α+ 3β + 8)].

(6.2)

(0.8;0cm)fig61.ps Figure 6.1. Graphs of the Hermite and Jacobi polynomials that
occur in (6.7) (with α = 50, β = 40). The graphs coincide when α, β →∞.

We obtain the expansion

P (α,β)
n (x) = zn

n∑
k=0

ck
zk

Hn−k(ζ)
(n− k)!

, (6.3)

where
z =

√
B , ζ =

A

2
√
B
, (6.4)

and ck are the coefficients defined by

f(x,w) = F (x,w)e−Aw+Bw2
=

∞∑
k=0

ckw
k, (6.5)

with F (x,w) given in (6.1). We have

c0 = 1, c1 = c2 = 0,

c3 = 1

12
[β − α− 3x(α+ β + 4) + 3x2(α− β) + x3(5α+ 5β + 16)].

(6.6)

For large values of the parameters α and β we can prove that the quantities Φk := ck/z
k

have the asymptotic behavior as shown in (3.7).
The following limit is of interest:

lim
α,β→∞

(
8

α+β

)n/2

P (α,β)
n

(
x

√
2

α+β
− α−β

α+β

)
=

1
n!
Hn(x), (6.7)

under the conditions that

α− β

α+ β
= o(1), x = O(1), as α, β →∞. (6.8)

Details on this limit will be given in the next section. Graphs of the polynomials of
(6.7) (with α = 50, β = 40) are given in Figure 6.1.

6.1. Asymptotic properties of the expansion (6.3)

We want to show formula (3.8) for the Jacobi case. It is very similar to the other cases,
although somewhat more complicated.
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We can derive a linear second order differential equation pf ′′ + qf ′ + rf = 0 (where
derivatives are with respect to w) of the function f(x,w) defined in (6.5). The quantities
p, q,and r are polynomials in α, β, x and w, and are available on request from the authors
(together they fill several pages of Maple output). They have the following structure

p =
4∑

k=1

pkw
k, q =

5∑
k=0

qkw
k, r =

6∑
k=2

rkw
k.

Let γ = max(α, β). From the Maple output we observe that, for all occurring values of
the index k,

pk = O(γ), qk = O(γ2), rk = O(γ3).

By substituting this information into the differential equation pf ′′ + qf ′ + rf = 0, we
obtain for the coefficients ck of (6.5) a recurrence relation of the form

ck+1 = a ck + b ck−1 + c ck−2 + d ck−3 + e ck−4 + f ck−5 + g ck−6. (6.9)

We denote h ≡ (k + 1)(kp1 + q0) = O(γ2). Then, we have

a =
k((k − 1)p2 + q1)

h
= O(1), b =

(k − 1)((k − 2)p3 + q2)
h

= O(1),

c =
(k − 2)(k − 3)p4 + (k − 2)q3 + r2

h
= O(γ), d =

(k − 3)q4 + r3
h

= O(γ),

e =
(k − 4)q5 + r4

h
= O(γ), f =

r5
h

= O(γ), g =
r6
h

= O(γ).

For the first four ck we have (cf. (6.6))

c0 = 1 = O(1), c1 = c2 = 0 = O(1), c3 = O(γ).

By computing the next coefficients we find that

c4 = −(r3 + 3q1c3 + 6p2c3)/(12p1 + 4q0) = O(γ),

and similarly
c5 = O(γ), c6 = O(γ2), c7 = O(γ2).

Therefore, equation (3.8) holds for k = 0, ..., 7. Now let us suppose that (3.8) holds for
a certain k ≥ 7. Then, using the recurrence (6.9) and the orders of a, ..., g, we have

ck+1 =aO(γbk/3c) + bO(γb(k−1)/3c) +
c

γ
O(γ1+b(k−2)/3c) +

d

γ
O(γ1+b(k−3)/3c)+

e

γ
O(γ1+b(k−4)/3c) +

f

γ
O(γ1+b(k−5)/3c) +

g

γ
O(γ1+b(k−6)/3c) =

c

γ
O(γb(k+1)/3c) = O(γb(k+1)/3c),
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unless c = 0. But, for generic x, c 6= 0. The order of c is governed by r2, that is a
polynomial of degree 3 in x that vanishes, at most, for three real values of x. For them,
for the real roots of r2, the order (3.8) of ck could be improved as in the other cases.
Details on these special cases will not be given because they are not very essential.

We conclude with giving details on the limit in (6.7). For large α and β the quantities
A and B of (6.2) behave as follows:

A ∼ 1

2
(α+ β) (x+ ρ), B ∼ 1

8
(α+ β) (1 + 2xρ− 3x2), ρ =

α− β

α+ β
. (6.10)

Hence,

z ∼
√

α+β

8

√
1 + 2xρ− 3x2 , ζ ∼

√
α+β

2

ρ+ x√
1 + 2xρ− 3x2

. (6.11)

If xρ and x2 become small for large values of α and β, we can easily invert the relation
between ζ and x, giving

x ∼
√

2

α+β
ζ − ρ, z ∼

√
α+β

8
. (6.12)

Hence, taking only the term k = 0 in (6.3), we obtain

P (α,β)
n

(√
2

α+β
ζ − α−β

α+β

)
∼
(

α+β

8

)n/2 Hn(ζ)
n!

, as α, β →∞. (6.13)

Replacing x and ζ, we obtain (6.7) under the conditions given in (6.8). We can relax this
condition, and derive more complicated limits. But the simple form of (6.7) is rather
attractive, and will get lost under more general conditions on x and α− β.

Again, an approximation of the zeros jn,m of P (α,β)
n follows from (6.13):

jn,m ∼
√

2

α+β
hn,m − α− β

α+ β
, m = 1, 2, . . . , n,

where hn,m are the zeros of Hn(ζ). When we use the method of §4.1 we obtain the
following:

jn,m = −α− β

α+ β
+

2
√

2αβ hn,m

(α+ β)
3
2

+
2(α− β)(2n+ 1 + 2h2

n,m)
(α+ β)2

+O
(
α−

3
2

)
, (6.14)

for m = 1, 2, . . . , n. This expansion is derived under the conditions α → ∞, β = bα, b
fixed, not with the approximations given in (6.10) - (6.12), but by using the original
values of A,B, z, ζ and c3 given in (6.2), (6.4) and (6.6). The derivation of (6.14) is
quite straightforward, but rather complicated. For example, the first step is to write x
as a function of ζ by inverting the relation in (6.4) with A,B given in (6.2). This gives

x =
V + 4ζ

√
W

2U
,

U = (α+ β + 2)2 + 2ζ2[3(α+ β) + 8],

V = 2(α− β)[α+ β + 2(1 + ζ2)],

W = 2(α+ 1)(β + 1)(α+ β + 4) + 4ζ2[α2 + αβ + β2 + 5(α+ β) + 8].
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With this x the quantities z and c3 of (6.4) and (6.6) should be used, to construct F (ζ)
and G(ζ) of (4.11). Further details will not be given.

Acknowledgment. J. L. López wants to thank C.W.I. of Amsterdam for its scientific
support and hospitality during the realization of this work.

7. Bibliography

[ 1] R. Askey & M.E.H. Ismail (1984). Recurrence relations, continued fractions,
and orthogonal polynomials, Mem. Amer. Math. Soc. 300, 47–68.

[ 2] L. Carlitz (1958). On some polynomials of Tricomi, Boll. Un. Mat. Ital. 13,
58–64.

[ 3] F. Calogero (1978). Asymptotic behaviour of the zeros of the (generalized)
Laguerre polynomials Lα

n(x) as the index α → ∞ and limiting formula relating
Laguerre polynomials of large index and large argument to Hermite polynomials,
Lettere al Nuovo Cimento 23, 101–102.

[ 4] T.S. Chihara (1978). An introduction to orthogonal polynomials. Gordon and
Breach, New York.

[ 5] T.S. Chihara & M.E.H. Ismail (1982). Orthogonal polynomials suggested by
a queuing model, Adv. Appl. Math. 3, 441–462.

[ 6] Frenzen, C.L., & R. Wong (1988). Uniform asymptotic expansions of Laguerre
polynomials, SIAM J. Math. Anal., 19, 1232–1248.

[ 7] W.M.Y. Goh & J. Wimp (1997). On the asymptotics of the Tricomi-Carlitz
polynomials and their zero distributions (I), SIAM J. Math. Anal. 25, 420–428.

[ 8] W.M.Y. Goh & J. Wimp (1997). The zero distribution of the Tricomi-Carlitz
polynomials, Computers Math. Applic. 33, 119–127.

[ 9] F.W.J. Olver (1974 & 1997). Asymptotics and Special Functions. Academic
Press, New York. Reprinted in 1997 by A.K. Peters, ISBN 1-56881-069-5.
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