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Two-Point Taylor Expansions of Analytic Functions

By José L. López and Nico M. Temme

Taylor expansions of analytic functions are considered with respect to two
points. Cauchy-type formulas are given for coefficients and remainders in the
expansions, and the regions of convergence are indicated. It is explained how
these expansions can be used in deriving uniform asymptotic expansions of
integrals. The method is also used for obtaining Laurent expansions in two
points.

1. Introduction

In deriving uniform asymptotic expansions of a certain class of integrals one
encounters the problem of expanding a function, which is analytic in some
domain � of the complex plane, in two points. The first mention of the use of
such expansions in asymptotics is given in [1], where Airy-type expansions
are derived for integrals having two nearby (or coalescing) saddle points. This
reference does not give further details about two-point Taylor expansions,
because the coefficients in the Airy-type asymptotic expansion are derived in a
different way.

To demonstrate the application in asymptotics we consider the integral

Fb(ω) = 1

2π i

∫
C

eω( 1
3 z3−b2z) f (z) dz, (1)
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where ω is a large positive parameter and b is a parameter that may assume
small values. The contour starts at ∞e−iπ/3, terminates at ∞eiπ/3, and lies in a
domain where the function f is analytic. In particular, f is analytic in a domain
that contains the saddle points ±b of the exponent in the integrand. One
method for obtaining an asymptotic expansion of Fb(ω) that holds uniformly
for small values of b is based on expanding f at the two saddle points:

f (z) =
∞∑

n=0

An(z2 − b2)n + z
∞∑

n=0

Bn(z2 − b2)n, (2)

and substituting this expansion into (1). When interchanging summation and
integration, the result is a formal expansion in two series in terms of functions
related with Airy functions. A Maple algorithm for obtaining the coefficients
An and Bn , with applications to Airy-type expansions of parabolic cylinder
functions, is given in [2].

In a future paper we shall use expansions like (2) to derive convergent
expansions for orthogonal polynomials and hypergeometric functions that also
have an asymptotic nature. The purpose of the present article is to give
details on the two-point Taylor expansion (2), in particular on the region
of convergence and on representations in terms of Cauchy-type integrals of
coefficients and remainders of these expansions. Some information on this
type of expansions is also given in [3, p. 149, Exercise 24].

Without referring to the applications in asymptotic analysis we include
analogous properties of the two-point Laurent expansions and of another
related type, the two-point Taylor–Laurent expansion.

2. Two-point Taylor expansions

We consider the expansion (2) in a more symmetric form and give information
on the coefficients and the remainder in the expansion.

THEOREM 1. Let f (z) be an analytic function on an open set � ⊂ C and z1,
z2 ∈ � with z1 
= z2. Then, f (z) admits the two-point Taylor expansion

f (z) =
N−1∑
n=0

[an(z1, z2)(z − z1) + an(z2, z1)(z − z2)] (z − z1)n(z − z2)n

+ rN (z1, z2; z), (3)

where the coefficients an(z1, z2) and an(z2, z1) of the expansion are given by
the Cauchy integral

an(z1, z2) ≡ 1

2π i(z2 − z1)

∫
C

f (w) dw

(w − z1)n(w − z2)n+1
. (4)
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Figure 1. (a) Contour C in the integrals (3)–(5). (b) For z ∈ Oz1,z2 , we can take a contour C in
� which contains Oz1,z2 inside and therefore, |(z − z1)(z − z2)| < |(w − z1)(w − z2)|∀ w ∈ C.

The remainder term rN (z1, z2; z) is given by the Cauchy integral

rN (z1, z2; z) ≡ 1

2π i

∫
C

f (w) dw

(w − z1)N (w − z2)N (w − z)
(z − z1)N (z − z2)N . (5)

The contour of integration C is a simple closed loop which encircles the points
z1 and z2 (for an) and z, z1 and z2 (for rN ) in the counterclockwise direction
and is contained in � (see Figure 1(a)).

The expansion (3) is convergent for z inside the Cassini oval (see Figure 2)

Oz1,z2 ≡ {z ∈ �, |(z − z1)(z − z2)| < r}

where

r ≡ Infw∈C � {|(w − z1)(w − z2)|} .

In particular, if f (z) is an entire function (� = C), then the expansion (3)
converges ∀z ∈ C.

Proof: By Cauchy’s theorem,

f (z) = 1

2π i

∫
C

f (w) dw

w − z
, (6)

Figure 2. Shape of the Cassini oval depending on the relative size of the parameter r and the
focal distance |z1 − z2|. (a) 4r > |z1 − z2|2; (b) 4r = |z1 − z2|2; (c) 4r < |z1 − z2|2.
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where C is the contour defined above (Figure 1(a)). Now we write

1

w − z
= z + w − z1 − z2

(w − z1)(w − z2)

1

1 − u
, (7)

where

u ≡ (z − z1)(z − z2)

(w − z1)(w − z2)
. (8)

Now we introduce the expansion

1

1 − u
=

N−1∑
n=0

un + uN

1 − u
(9)

in (7) and this in (6). After straightforward calculations we obtain (3)–(5).
For any z ∈ Oz1,z2 , we can take a contour C in � such that |(z − z1)

(z − z2)| < |(w − z1)(w − z2)| ∀w ∈ C (see Figure 1 (b)). In this contour | f (w)|
is bounded by some constant C: | f (w)| ≤ C . Introducing these two bounds in (5)
weseethat limN→∞ rN (z1, z2; z) = 0andtheprooffollows. �

2.1. An alternative form of the expansion

The present expansion of f (z) in the form (3) stresses the symmetry of the
expansion with respect to z1 and z2. In this representation it is not possible,
however, to let z1 and z2 coincide, which causes a little inconvenience (the
coefficients an(z1, z2) become infinitely large as z1 → z2; the remainder
rN (z1, z2; z) remains well-defined). An alternative way is the representation
(cf. (2)),

f (z) =
∞∑

n=0

[An(z1, z2) + Bn(z1, z2)z](z − z1)n(z − z2)n,

and we have the relations

An(z1, z2) = −z1an(z1, z2) − z2an(z2, z1),

Bn(z1, z2) = an(z1, z2) + an(z2, z1),

which are regular when z1 → z2. In fact we have

An(z1, z2) = 1

2π i

∫
C

w − z1 − z2

[(w − z1)(w − z2)]n+1
f (w) dw,

Bn(z1, z2) = 1

2π i

∫
C

f (w) dw

[(w − z1)(w − z2)]n+1
.

Letting z1 → 0 and z2 → 0, we obtain the standard Maclaurin series of f (z)
with even part (the An series) and odd part (the Bn series).
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2.2. Explicit forms of the coefficients

Equation 4 is not appropriate for numerical computations. A more practical Q1

formula to compute the coefficients of the above two-point Taylor expansion is
given in the following proposition.

PROPOSITION 1. Coefficients an(z1, z2) in the expansion (3) are also given by
the formulas:

a0(z1, z2) = f (z2)

z2 − z1
(10)

and, for n = 1, 2, 3, . . .

an(z1, z2) =
n∑

k=0

(n + k − 1)!

k!(n − k)!

(−1)n+1n f (n−k)(z2) + (−1)kk f (n−k)(z1)

n!(z1 − z2)n+k+1
. (11)

Proof: We deform the contour of integration C in equation (4) to any
contour of the form C1 ∪ C2 also contained in �, where C1 (C2) is a simple
closed loop which encircles the point z1 (z2) in the counterclockwise direction
and does not contain the point z2 (z1) inside (see Figure 3(a)). Then,

an(z1, z2) = 1

2π i(z2 − z1)

{ ∫
C1

f (w)

(w − z2)n+1

dw

(w − z1)n

+
∫
C2

f (w)

(w − z1)n

dw

(w − z2)n+1

}

= 1

(z2 − z1)

{
1

(n − 1)!

dn−1

dwn−1

f (w)

(w − z2)n+1

∣∣∣∣
w=z1

+ 1

n!

dn

dwn

f (w)

(w − z1)n

∣∣∣∣
w=z2

}
.

C
z

1

z2

z

C

1

2

z
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z1

z2
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z2
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0
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C2 C2
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Figure 3. (a) The function (w − z2)−n−1 f (w) is analytic inside C1, whereas (w − z1)−n f (w)
is analytic inside C2. (b) The function (w − z2)−n−1g1(w) is analytic inside C1, whereas
(w − z1)−n g2(w) is analytic inside C2. (c) The function (w − z2)−n−1g(w) is analytic inside C1,
whereas (w − z1)−n f (w) is analytic inside C2.
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From here, equations (10) and (11) follow after straightforward computations.
�

2.3. Two-point Taylor polynomials

Next we can define the two-point Taylor polynomial of the function f (z) in the
following way:

DEfiNITION 1. Let z be a real or complex variable and z1 and z2 (z1 
= z2) be
any two real or complex numbers. If f (z) is n − 1 times differentiable at those
two points, we define the two-point Taylor polynomial of f (z) at z1 and z2 and
degree 2n − 1 as

Pn(z1, z2; z) ≡
n−1∑
k=0

[ak(z1, z2)(z − z1) + ak(z2, z1)(z − z2)](z − z1)k(z − z2)k,

where the coefficients ak(z1, z2) are given in (10) and (11).

PROPOSITION 2. In the conditions of the above definition, the remainder of
the approximation of f (z) by Pn(z1, z2; z) at z1 and z2 is defined as

rn(z1, z2; z) ≡ f (z) − Pn(z1, z2; z).

Then, (i) rn(z1, z2; z) = o(z − z1)n−1 as z → z1 and rn(z1, z2; z) = o(z − z2)n−1

as z → z2. (ii) If f (z) is n times differentiable at z1 and/or z2, then rn(z1, z2; z) =
O(z − z1)n as z → z1 and/or rn(z1, z2; z) = O(z − z2)n as z → z2.

Proof: The proof is trivial if f (z) is analytic at z1 and z2 by using (5). In
any case, for real or complex variable, the proof follows after straightforward
computations by using l’Hôpital’s rule and equations (10) and (11). �

Remark 1: Observe that the Taylor polynomial of f (z) at z1 and z2 and
degree 2n − 1 is the same as the Hermite’s interpolation polynomial of f (z) at
z1 and z2 with data f (zi ), f ′(zi ), . . . , f (n−1)(zi ), i = 1, 2.

3. Two-point Laurent expansions

In the standard theory for Taylor and Laurent expansions much analogy exists
between the two types of expansions. For two-point expansions, we have a
similar agreement in the representations of coefficients and remainders.

THEOREM 2. Let �0 and � be closed and open sets, respectively, of the
complex plane, and �0 ⊂ � ⊂ C. Let f (z) be an analytic function on �\�0 and
z1, z2 ∈ �0 with z1 
= z2. Then, for any z ∈ �\�0, f (z) admits the two-point
Laurent expansion
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f (z) =
N−1∑
n=0

[bn(z1, z2)(z − z1) + bn(z2, z1)(z − z2)](z − z1)n(z − z2)n

+
N−1∑
n=0

[cn(z1, z2)(z − z1) + cn(z2, z1)(z − z2)](z − z1)−n−1(z − z2)−n−1

+ rN (z1, z2; z), (12)

where the coefficients bn(z1, z2), bn(z2, z1), cn(z1, z2), and cn(z2, z1) of the
expansion are given, respectively, by the Cauchy integrals

bn(z1, z2) ≡ 1

2π i(z2 − z1)

∫
�1

f (w) dw

(w − z1)n(w − z2)n+1
(13)

and

cn(z1, z2) ≡ 1

2π i(z2 − z1)

∫
�2

(w − z1)n+1(w − z2)n f (w) dw. (14)

The remainder term rN (z1, z2; z) is given by the Cauchy integrals

rN (z1, z2; z) ≡ 1

2π i

∫
�1

f (w) dw

(w − z1)N (w − z2)N (w − z)
(z − z1)N (z − z2)N

− 1

2π i

∫
�2

(w − z1)N (w − z2)N f (w) dw

w − z

1

(z − z1)N (z − z2)N
.

(15)

In these integrals, the contours of integration �1 and �2 are simple closed loops
contained in �\�0 which encircle the points z1 and z2 in the counterclockwise
direction. Moreover, �2 does not contain the point z inside, whereas �1

encircles �2 and the point z (see Figure 4(a)).
The expansion (12) is convergent for z inside the Cassini annulus (see

Figure 5)

Az1,z2 ≡ {z ∈ �\�0, r2 < |(z − z1)(z − z2)| < r1} (16)

where

r1 ≡ Infw∈C\�{|(w − z1)(w − z2)|}, r2 ≡ Supw∈�0
{|(w − z1)(w − z2)|}.

Proof: By Cauchy’s theorem,

f (z) = 1

2π i

∫
�1

f (w) dw

w − z
− 1

2π i

∫
�2

f (w) dw

w − z
, (17)

where �1 and �2 are the contours defined above. We substitute (7) and (8) into
the first integral above and
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Figure 4. (a) Contours �1 and �2 in the integrals (12)–(15). (b) For z ∈ Az1,z2 , we can take
a contour �2 in � situated between �0 and Az1,z2 and a contour �1 in �

which contains Az1,z2 inside. Therefore, |(z − z1)(z − z2)| < |(w − z1)(w − z2)|∀ w ∈ �1 and
|(w − z1)(w − z2)| < |(z − z1)(z − z2)|∀ w ∈ �2.

1

w − z
= z1 + z2 − z − w

(z − z1)(z − z2)

1

1 − u
, u ≡ (w − z1)(w − z2)

(z − z1)(z − z2)
,

into the second one. Now we introduce the expansion (9) of the factor
(1 − u)−1 in both integrals in (17). After straightforward calculations we obtain
(12)–(15).

For any z verifying (16), we can take simple closed loops �1 and �2 in
�\�0 such that |(z − z1)(z − z2)| < |(w − z1)(w − z2)| ∀w ∈ �1 and |(z − z1)
(z − z2)| > |(w − z1)(w − z2)| ∀w ∈ �2 (see Figure 4(b)). On these contours
| f (w)| is bounded by some constant C: | f (w)| ≤ C . Introducing these bounds
in (15) we see that limN→∞ rN (z1, z2; z) = 0 and the proof follows. �

Figure 5. Shape of the Cassini annulus depending on the relative size of the parameters r1, r2

and the focal distance |z1 − z2|. (a) 4r1 > 4r2 > |z1 − z2|2; (b) 4r1 > |z1 − z2|2 = 4r2; (c)
4r1 > |z1 − z2|2 > 4r2; (d) 4r1 = |z1 − z2|2 > 4r2; (e) |z1 − z2|2 > 4r1 > 4r2.
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If the only singularities of f (z) inside �0 are just poles at z1 and/or z2, then
an alternative formula to (13) and (14) to compute the coefficients of the
above two-point Laurent expansion is given in the following proposition.

PROPOSITION 3. Suppose that g1(z) ≡ (z − z1)m1 f (z)and g2(z) ≡ (z − z2)m2

f (z) are analytic functions in � for certain m1, m2 ∈ N. Then, for n =
0, 1, 2, . . . , coefficients bn(z1, z2) and cn(z1, z2) in the expansion (12) are also
given by the formulas:

bn(z1, z2) =
n+m1−1∑

k=0

(
n + m1 − 1

k

)
(−1)k+1(n + 1)k g(n+m1−k−1)

1 (z1)

(n + m1 − 1)!(z1 − z2)n+k+2

+
n+m2∑
k=0

(
n + m2

k

)
(−1)k(n)k g(n+m2−k)

2 (z2)

(n + m2)!(z2 − z1)n+k+1
, (18)

where (n)k denotes the Pochhammer symbol and

cn(z1, z2) = −
m1−n−2∑

k=0

k!

(
m1 − n − 2

k

) (
n
k

)
(z1 − z2)n−k−1g(m1−n−k−2)

1 (z1)

(m1 − n − 2)!

+
m2−n−1∑

k=0

k!

(
m2 − n − 1

k

) (
n + 1

k

)
(z2 − z1)n−k g(m2−n−k−1)

2 (z2)

(m2 − n − 1)!
.

(19)

In these formulas, empty sums must be understood as zero. Coefficients
bn(z2, z1) and cn(z2, z1) are given, respectively, by (18) and (19) interchanging
z1, g1, and m1 by z2, g2, and m2 respectively.

Proof: We deform both, the contour �1 in equation (13) and �2 in equa-
tion (14), to any contour of the form C1 ∪ C2 contained in �, where C1 (C2) is a
simple closed loop which encircles the point z1 (z2) in the counterclockwise
direction and does not contain the point z2 (z1) inside (see Figure 3(b)). Then,

bn(z1, z2) = 1

2π i(z2 − z1)

{ ∫
C1

g1(w)

(w − z2)n+1

dw

(w − z1)n+m1

+
∫
C2

g2(w)

(w − z1)n

dw

(w − z2)n+m2+1

}

= 1

z2 − z1

{
1

(n + m1 − 1)!

dn+m1−1

dwn+m1−1

g1(w)

(w − z2)n+1

∣∣∣∣
w=z1

+ 1

(n + m2)!

dn+m2

dwn+m2

g2(w)

(w − z1)n

∣∣∣∣
w=z2

}
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and

cn(z1, z2) = 1

2π i(z2 − z1)

{ ∫
C1

(w − z2)ng1(w)

(w − z1)m1−n−1
dw

+
∫
C2

(w − z1)n+1g2(w)

(w − z2)m2−n
dw

}

= 1

z2 − z1

{
dm1−n−2

dwm1−n−2

[
(w − z2)ng1(w)

(m1 − n − 2)!

]∣∣∣∣
w=z1

+ dm2−n−1

dwm2−n−1

[
(w − z1)n+1g2(w)

(m2 − n − 1)!

]∣∣∣∣
w=z2

}
.

From here, equations (18) and (19) follow after straightforward computations.
�

Remark 2: Let z be a real or complex variable and z1, z2 (z1 
= z2) be any
two real or complex numbers. Suppose that g1(z) ≡ (z − z1)m1 f (z) is n times
differentiable at z1 and g2(z) ≡ (z − z2)m2 f (z) is n times differentiable at z2.
Define

g(z) ≡ f (z) −
M−1∑
n=0

[cn(z1, z2)(z − z1)

+ cn(z2, z1)(z − z2)](z − z1)−n−1(z − z2)−n−1,

where M ≡ max{m1, m2}. Then, the thesis of Proposition 2 holds for f (z)
replaced by g (z). Moreover, if (z − z1)m1 (z − z2)m2 f (z) is an analytic function
in �, then the thesis of Theorem 1 applies to g (z).

4. Two-point Taylor–Laurent expansions

THEOREM 3. Let �0 and � be closed and open sets, respectively, of the
complex plane, and �0 ⊂ � ⊂ C. Let f (z) be an analytic function on �\�0,

z1 ∈ �0 and z2 ∈ �\�0. Then, for z ∈ �\�0, f (z) admits the Taylor–Laurent
expansion

f (z) =
N−1∑
n=0

[dn(z1, z2)(z − z1) + dn(z2, z1)(z − z2)](z − z1)n(z − z2)n

+
N−1∑
n=0

en(z1, z2)(z − z2)n(z − z1)−n−1 + rN (z1, z2; z), (20)
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where the coefficients dn(z1, z2), dn(z2, z1) and en(z1, z2) of the expansion are
given by the Cauchy integrals

dn(z1, z2) ≡ 1

2π i(z2 − z1)

∫
�1

f (w) dw

(w − z1)n(w − z2)n+1
(21)

and

en(z1, z2) ≡ z1 − z2

2π i

∫
�2

(w − z1)n

(w − z2)n+1
f (w) dw. (22)

The remainder term rN (z1, z2; z) is given by the Cauchy integrals

rN (z1, z2; z) ≡ 1

2π i

∫
�1

f (w) dw

(w − z1)N (w − z2)N (w − z)
(z − z1)N (z − z2)N

− 1

2π i

∫
�2

(w − z1)N f (w) dw

(w − z2)N (w − z)

(z − z2)N

(z − z1)N
. (23)

In these integrals, the contours of integration �1 and �2 are simple closed
loops contained in �\�0 which encircle �0 in the counterclockwise direction.
Moreover, �2 does not contain the points z and z2 inside, whereas �1 encircles
�2 and the points z and z2 (see Figure 6(a)).

The expansion (20) is convergent in the region (Figure 7)

Dz1,z2 ≡ {z ∈ �\�0, |(z − z1)(z − z2)| < r1 and |z − z2| < r2|z − z1|}
(24)

where r1 ≡ Infw∈C\�{|(w − z1)(w − z2)|} and r2 ≡ Infw∈�0{|(w − z2)(w −
z1)−1|}.

z

Dz ,z1 2

1

z2

0z
1

z2
2

z1
0

z1
0

2

Figure 6. (a) Contours �1 and �2 in the integrals (20)–(23). (b) For z ∈ Dz1,z2 , we
can take a contour �2 situated between �0 and Dz1,z2 and a contour �1 in �

which contains Dz1,z2 inside. Therefore, |(z − z1)(z − z2)| < |(w − z1)(w − z2)|∀ w ∈ �1 and
|(w − z1)(z − z2)| < |(z − z1)(w − z2)| ∀w ∈ �2.
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z1

z2

z1

z2

z1

z2

Figure 7. The region Dz1,z2 defined in Theorem 3 is given by Dz1,z2 = D1
⋂

D2, where D1 is the
Cassini oval of focus z1 and z2 and parameter r1. On the other hand, for r2 < 1 (r2 > 1), D2 is the
interior (exterior) of the circle of center z1 + (1 − r 2

2 )−1(z2 − z1) = z2 + r 2
2 (r 2

2 − 1)−1(z1 − z2)
and radius |z1 − z2|r2/|r 2

2 − 1|. For r2 = 1, D2 is just the half plane |z − z2| < |z − z1|. The shape
of the Cassini annulus depends on the relative size of the parameters

√
r1,

√
r2 and the focal distance

|z1 − z2|. (a) 4r1 > |z1 − z2|2, r2 > 1; (b) 4r1 > |z1 − z2|2, r2 = 1; (c) 4r1 > |z1 − z2|2, r2 < 1;
(d) 4r1 = |z1 − z2|2, r2 > 1; (e) 4r1 = |z1 − z2|2, r2 = 1; (f) 4r1 = |z1 − z2|2, r2 < 1; (g)
4r1 < |z1 − z2|2, r2 > 1; (h) 4r1 < |z1 − z2|2, r2 = 1; (i) 4r1 < |z1 − z2|2, r2 < 1.

Proof: By Cauchy’s theorem,

f (z) = 1

2π i

∫
�1

f (w) dw

w − z
− 1

2π i

∫
�2

f (w) dw

w − z
, (25)

where �1 and �2 are the contours defined above. We substitute (17) and (8)
into the first integral above and

1

w − z
= z2 − z1

(z − z1)(w − z2)

1

1 − u
, u ≡ (w − z1)(z − z2)

(z − z1)(w − z2)
(26)

into the second one. Now we introduce the expansion (9) of the factor (1 − u)−1

in both integrals in (25). After straightforward calculations we obtain (20)–(23).
For any z verifying (24), we can take simple closed loops �1 and

�2 in �\�0 such that |(z − z1)(z − z2)| < |(w − z1)(w − z2)|∀w ∈ �1 and
|(z − z1)(w − z2)| > |(w − z1)(z − z2)|∀w ∈ �2 (see Figure 6(b)). On these
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contours | f (w)| is bounded by some constant C: | f (w)| ≤ C . Introduc-
ingtheseboundsin(23)weseethatlimN→∞ rN (z1, z2; z) = 0andtheprooffollows.

�

If the only singularities of f (z) inside �0 are just poles at z1, then an
alternative formula to (21) and (22) to compute the coefficients of the above
two-point Taylor–Laurent expansion is given in the following proposition.

PROPOSITION 4. Suppose that g(z) ≡ (z − z1)m f (z) is an analytic function
in � for certain m ∈ N. Then, coefficients dn(z1, z2) and dn(z2, z1) in the
expansion (20) are also given by the formulas:

d0(z1, z2) = f (z2)

z2 − z1
−

m−1∑
k=0

1

(m − k − 1)!

g(m−k−1)(z1)

(z2 − z1)k+2
, (27)

d0(z2, z1) = 1

m!

g(m)(z1)

z1 − z2
,

and, for n = 1, 2, 3, . . . ,

dn(z1, z2) = − (−1)n

n!

{
m+n−1∑

k=0

(n + k)!

k!(m + n − k − 1)!

g(m+n−k−1)(z1)

(z2 − z1)n+k+2

+ n
n∑

k=0

(n + k − 1)!

k!(n − k)!

f (n−k)(z2)

(z1 − z2)n+k+1

}
, (28)

dn(z2, z1) = − (−1)n

n!

{
n

m+n∑
k=0

(n + k − 1)!

k!(m + n − k)!

g(m+n−k)(z1)

(z2 − z1)n+k+1

+
n−1∑
k=0

(n + k)!

k!(n − k − 1)!

f (n−k−1)(z2)

(z1 − z2)n+k+2

}
. (29)

For n = 0, 1, 2, . . . , coefficients en(z1, z2) are given by

en(z1, z2) = (−1)n

n!

m−n−1∑
k=0

(n + k)!

k!(m − n − k − 1)!

g(m−n−k−1)(z1)

(z2 − z1)n+k
. (30)

Proof: We deform both, the contour �1 in equation (21) and the contour
�2 in equation (22) to any contour of the form C1 ∪ C2 contained in �, where
C1 (C2) is a simple closed loop which encircles the point z1 (z2) in the
counterclockwise direction and does not contain the point z2 (z1) inside (see
Figure 3(c)). Then,
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dn(z1, z2) = 1

2π i(z2 − z1)

{ ∫
C1

g(w)

(w − z2)n+1

dw

(w − z1)n+m

+
∫
C2

f (w)

(w − z1)n

dw

(w − z2)n+1

}

= 1

(z2 − z1)

{
1

(n + m − 1)!

dn+m−1

dwn+m−1

g1(w)

(w − z2)n+1

∣∣∣∣
w=z1

+ 1

n!

dn

dwn

f (w)

(w − z1)n

∣∣∣∣
w=z2

}
,

an analog formula for dn(z2, z1), and

en(z1, z2) = z1 − z2

2π i

∫
C1

g(w)

(w − z2)n+1

dw

(w − z1)m−n

= (z1 − z2)
1

(m − n − 1)!

dm−n−1

dwm−n−1

g(w)

(w − z2)n+1

∣∣∣∣
w=z1

.

From here, equations (27)–(30) follow after straightforward computations. �

Remark 3: Let z be a real or complex variable and z1 and z2 (z1 
= z2) two
real or complex numbers. Suppose that (z − z1)m f (z) is n times differentiable
at z1 for certain m ∈ N and f (z) is n times differentiable at z2. Define

g(z) ≡ f (z) −
m−1∑
n=0

en(z1, z2)(z − z1)−n−1(z − z2)n.

Then, the thesis of Proposition 2 holds for g (z). If moreover, (z − z1)m f (z) is
an analytic function in �, then the thesis of Theorem 1 applies to g(z).
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UNIVERSIDAD PÚBLICA DE NAVARRA

CWI

(Received 00, 0000)



BS017-02 SAM.cls January 2, 1904 18:15

Queries

Q1 Definition 4 has been set as Equation 4. Ok as set ??

310




