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The zeros in the complex z plane of the Whittaker function W, ,(2), closely
related to spherical waves in the quantum-mechanical Coulomb problem, are
investigated for varying real values of the parameters ¢ and pu.

1. Introduction

The solution of the Schrodinger equation for physical systems, like heavy-ions,
where the interaction is described via a potential presenting a Coulomb tail requires
to match the logarithmic derivative of the regular wavefunction in the internal (nu-
clear) region with that of the outgoing wavefunction in the external (Coulombian)
one (see Grama et al., 1994). The internal function is obtained by numerical in-
tegration of the differential equation. The external function is a well known linear
combination of the regular and irregular Coulomb wavefunctions (Abramowitz &
Stegun, 1965, p. 538), Fr(n, p) + iGL(n, p), which turns out to be proportional to
the Whittaker function Wy ,(z) (Slater, 1960, p. 93), with x = —in, p = L + 1/2,
and z = —2ip. In the physical problem, the angular momentum L is integer, al-
though it is frequent, for large values, to treat it as a continuous real parameter.
On the other hand, n and p are, respectively, inversely and directly proportional to
the square root of the energy. They become complex whenever complex energies are
considered, as it happens, for instance, in the case of resonances in a real potential
or bound states in a complex (absorptive) one.

Approximate determinations of the eigenvalues of the Schrdodinger equation, in
the discrete part of the spectrum, and of phase-shifts, in the continuous one, would
be facilitated by a chart of modulus and phase of the logarithmic derivative of the
external wavefunction. In preparing such a chart, it is crucial to know the location
of poles and zeros, since constant-modulus lines surround them and constant-phase
lines leave them radially. Obviously, those poles and zeros are respectively the zeros
of the wavefunction and those of its derivative.
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Most papers on the zeros of Wy, ,(z), or equivalently of the confluent hypergeo-
metric function ¥(a; b; z) or U(a, b, z), with a = p— k+1/2, b = 24+ 1, have dealt
mainly with the total number of either real or complex zeros for several real values
of a and b. References to those papers can be found, for instance, in Erdélyi (1953)
and Slater (1960). The purpose of this work is to investigate the zeros of W,/ ,(2)
in the complex z plane, for real ¢ and u. Referring to the heavy-ion process men-
tioned above, the parameters ¢ and i and the variable z correspond, in appropriate
units, respectively to the product of the charges of the interacting ions, the rela-
tive angular momentum and the square root of the energy in the center-of-mass
reference frame.

The zeros of Fr.(n,p) + iGL(n, p) located in the fourth quadrant of the complex
p plane, that is, in our notation, the zeros of W/, ,(z) in the second quadrant of
the z plane for ¢ < 0, were already considered by Grama et al. (1985). Here we
obtain the zeros of W, /27“(2) in the whole 2z plane and discuss their motion as the
parameters ¢ and p vary.

In our subsequent study we consider positive and negative values of ¢, corre-
sponding, respectively, to opposite and equal signs in the charges of the interacting
particles. In view of the relation (Buchholz, 1969, Sect. 2, Eq. (19))

Wieu(z) = Wi —u(2), (1.1)

we need to consider only positive values of . The variable z will be restricted to
the Riemann sheet

0 <argz < 2m. (1.2)
The complex conjugation property (Buchholz, 1969, Sect. 2.10)
Wg,u(2) = W,u(2), for real p, (1.3)
allows to extend immediately our results to the sheet
—27 < argz < 0. (1.4)

Approximate analytical expressions for the location of the zeros for some partic-
ular values of the parameters are obtained in Section 2. Different algorithms for the
evaluation of the zeros of W/, ,(z) and the behaviour of those zeros in the complex
z plane, as the parameters ¢ and p change, are considered in Section 3. Our results
are summarized in Section 4. Finally, an Appendix contains some details of the
procedure followed to locate the zeros.

2. Zeros of W,,, ,(z) for special values of the parameters

Analytical techniques can be used to determine approximately the location of
the zeros of W, . ,(2) for certain values of the parameters ¢ and p.
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2.1 Small values of ¢

The zeros of W, ,(2) can be trivially obtained for ¢ = 0. In fact, the Whittaker
function is in this case closely related (Buchholz, 1969, Sect. 2, Eq. (29)) to a Bessel
function

Wou(z) = 5 exp(i(1+u)m/2) (x2) 2 HD @22 /2)

% exp (—i(L+p)m/2) (m2) V2 HD (77/22/2). (2.5)

By using the relation between the two Hankel functions (Abramowitz & Stegun,
1965, Eq. 9.1.40), the last equation can be written in the form

Wou(2) = % exp (—i(1+p)m/2) (m2) 2 HD (ei7/2 2/2). (2.6)

The zeros of H ;(Ll)(f), for varying real u, have already been discussed and some of
them in the Riemann sheet

—%T <argé < g (2.7)
explicitly shown in Cruz & Sesma (1982) and Cruz et al. (1991). By identifying
E=e"/27/2, (2.8)
it is immediate to obtain the zeros of Wy ,(2) in the Riemann sheet
0 <argz < 2m. (2.9)

The first ones of the infinite set of zeros are shown in Fig. 1, obtained from Fig. 1 of
Cruz & Sesma (1982) through complex conjugation followed by a rotation, about
the origin, of angle 7/2 and a change of scale by a factor of 2.

As the parameter c increases or decreases from 0, the zeros of W, ,(z) progres-
sively deviate from their positions for ¢ = 0. Obviously, for small |¢|, the deviations
are more important for the zeros not far from the origin, whereas they are negligible
for zeros of large modulus. We are interested in the trajectories followed by the zeros
for a fixed ¢ and continuously varying real u. One could expect that, as long as ||
remains suficiently small, the trajectories of the zeros of W, ,(z) are close to those

of H,Sl) (ei”/22/2). But these trajectories are not a priori defined, since the zeros go
to infinity for certain critical values of p. So, one does not obtain a trajectory for
each zero, for y ranging from 0 to +o00, but pieces of trajectories corresponding to
values of i in the interval betwen two consecutive critical ones. In order to organize
this puzzle of pieces in whole trajectories, one needs to give a prescription about
which pieces are spliced as p goes through a critical value. One possibility is to
add a small imaginary part to u, so as to avoid the critical value. If that small
imaginary part is taken negative at every critical point, the global trajectories of
the zeros of Hﬁl) are those shown in Cruz & Sesma (1982), whereas if it is taken
positive, one obtains the trajectories discussed in Cruz et al. (1991). Numerical ex-
ploration indicates that the trajectories of the zeros of WC/Z,“(Z) tend, as ¢ — 0, to
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F1G. 1. Zeros of Wo,u(2). The first ones of an infinite set of trajectories, followed by the zeros
as p varies, are shown. The numbers beside the trajectories indicate the values of u.

the trajectories of those of H;(Ll)(ei”/22/2) with the prescription of adding to y, at
the critical values, a negative small imaginary part if ¢ — 07 (vanishing attractive
interaction) and a positive one if ¢ — 0~ (vanishing repulsive interaction).

Besides the zeros approaching those of H A(;) (e'™/2%/2), W, . .(2) presents another
set of zeros that, as ¢ — 0, go to the origin in such a manner that the quotient ¢/z
remains finite. (Below, in Subsect. 2.2, we report some zeros of W, ,(z) that go
also to the origin, but for ¢ tending to certain finite values and for some particular
values of p.) The position of those zeros for small ¢ can be obtained approximately
starting from the expression of the irregular Whittaker function in terms of the
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regular one M (Buchholz, 1969, Sect. 2, Eq. (18a)),

_ T _ Mg, u(2) M, —u(2)
W) = Sy (Tt T 173 (210)

and using for M a convergent expansion in terms of Bessel functions (Buchholz,
1969, Sect. 7, Eq. (16)),

o (2p)
P (2) Jopn(2VA2)
Miep(z) =242y - o =, (2.11)
=2 (Vkrz)2nt

that has proved (Abad & Sesma, 1995) to be very convenient to compute the
confluent hypergeometric function 1Fi(a;b;z) (closely related to M, ,(z), with
k= 3b—a, p = 3b—1) in the case of small z. The symbols ) (z) represent double
polynomials in the variables v and 22, the exponents of z ranging from 2 ["TH] to
2n. Assuming that z and ¢ are both small and of the same order and retaining only
the dominant terms in the right hand side of (??), the zeros of W/, ,(z) are given

approximately by

ZHH1/2 1 c
CT(—p—c¢/z+1/2) T2u+1) <1 2+ 1>
N zKH1/2 1 < B c
T(p—c/z+1/2) T(—2pn+1) —2p+1

) =0, (2.12)
or, equivalently, by

T(p—c/z+1/2) =

Zigﬂr(f,u —c/z+1/2) L2p+1) 1—c/(—2u+1)

(—2p+1) 1—¢/2u+1) "

(2.13)

This equation suggests, for small z, values of y — ¢/z + 1/2 in the vicinity of 0 or
of negative integers, that is,

cfz=n+p+1/2+ €y, n=0,1,2,..., e <1 (2.14)

In this case,

D(u—c/z+1/2) = T(—n—e,)
—(=1)"/ennl, (2.15)
M(—p—c/z+1/2) = T[(—n—2u—e,)
~ T(=n-—2u)(1— e p(—n — 2u)). (2.16)

(From (?7?) to (??) one obtains easily

c €n
S-S — O [V — 2.17
n+u+1/2( n+u+1/2) (2.17)
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with
I(—2u+1)
T(2p+ 1) (—n —2p)

en 2 —(—1)"2%H (2.18)

Of course, (??) is not an explicit expression for the location of the zeros, since z
enters in the expression of €,. Nevertheless, consistently with the approximations
made, one should replace z in the right hand side of (??) by ¢/(n + u+ 1/2).

Equation (??) shows that an infinite set of zeros are located near the origin for
sufficiently small ¢. The zeros approach the origin when either |¢| diminishes or the
label n increases. Although in the derivation of (??) we have tacitly assumed that
the values of u were different from an integer or a half-integer, continuity suggests
the validity of that equation for all real u. For positive c the zeros lie on the positive
real semiaxis. For negative ¢ they are located near the negative real semiaxis and,
given ¢ and n, their imaginary parts oscillate, with decreasing amplitude, from
positive to negative values and vice versa as pu increases.

2.2 Zeros near the origin for finite values of the parameters ¢ and u

Let us consider now the possibility of existing zeros at small values of z for finite
¢ and p. From (?7) and (?7) one obtains, by retaining only the first terms in the
sums,

s 2 F1/2 Jo,,(24/c
Wc/z,p(z) ~ ( ZM( \/_)

sin(2rp) \ T(—p—c/z+1/2) ()2
+ 2 J2u(2V/¢)
Fu— /s ¥ 1/2) (o)

The zeros of W, . ,,(z) would then be given approximately by

o T(p—c/z+1/2) J2p(2\/6> i J72,u(2\/6) —0. (2.20)

(—p—c/z+1/2) (Ve)* (Ve)—2m

Since ¢/z is now large, one may use (Abramowitz & Stegun, 1965, Eq. 6.1.47)

) ) 2] < 1. (2.19)

C(—p—c/z+1/2) %“(‘W —1)(z/c)? (2.21)

c

( z)Q# D(p—c/z+1/2)

to obtain from (77?)
Jou(2¢/€) = (=1)*" 2, (24/c) ~ 0. (2.22)

Therefore, the existence of zeros of W/, () in the vicinity of the origin, for finite
c and pu, is subordinated to the fulfilment of

HS)(2v/¢) = 0. (2.23)

This equation cannot be satisfied for real ; and positive values of c. It admits (Cruz
& Sesma, 1982), instead, one negative solution, ¢,, for 2u = 2n—1/2,n =1,2,3,....
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TABLE 1
Solutions of Eq. (??) of the text

n Mn Cn

1 3/4 ~0.25

2 7/4 —1.348. ..
3 11/4 —3.325. ..
4

15/4 ~6.180...

We report in Table 1 that solution for the lowest values of n. Zeros of W, ,(2) near
the origin may then be found for values of ¢ and x in the vicinity of, respectively,
¢n and pi, =n — 1/4. If one considers = p,, + € and ¢ = ¢, + 6, with ||, |6] < 1,
keeps terms up to O(z?) in the series of Bessel functions resulting for W, ,(z)
from (?7) and (?7), and uses again (?7), one has for the approximate location of
the zeros, instead of (?7),

52
Jop — (_1)2“J72M 12 (N(4N2_1)C_2J2u — 2 (J2u+1 - (_1)2“J72u+1)

— ((u=1/2) sz — (~)*(—p=1/2)T232) ) 2 0, (2.24)

where the value 24/c of the variable of all .J functions has been omitted. By replacing
u by pn + ¢ and ¢ by ¢, + 6 and retaining dominant terms, one obtains

2cp A B

22~ 12 wv (2.25)
D,
with the notation

aJ, aJ,

A, = { ”] + (—1)%mn {—”] —inJop, (2.26)
" W o, N H
B, = 2pnday, — C};/QEna (2.27)
ap? —1

Dn = (W + 1) (QMnJZ/,Ln - c'lll/2En) 3 (228)
Bu = ot — (~1)%0 Iy, (2.29)

where the Bessel functions J and their derivative with respect to the order are now
particularized for the value 2,/c,, of the variable.

The approximate expression (??) is valid only for values of ¢ and ¢ (and conse-
quently of |z|) sufficiently small as to guarantee that terms O(z*) in the series of
Bessel functions are certainly negligible in comparison with those O(z?). For not so
small € and §, approximate values of z could be obtained numerically by using for
Wi.u(z) a uniform asymptotic expansion for large « like, for instance, that given
by Dunster (1989). Unfortunately, the intricacy of the expansion makes difficult to
obtain an algebraic expression for the values of z.
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3. Zeros of W, ,(z) for general real values of ¢ and p

In order to have a description of the zeros of W, u(2) for arbitrary real values
of the parameters, we have obtained numerically the trajectories described by the
first zeros for fixed ¢ and changing pu.

Numerical methods to evaluate the regular and irregular Coulomb functions have
deserved a considerable attention. The report by Fullerton (1980) collects references
to papers on the subject published before 1980. More recently, other algorithms
(Aquilanti & Lagana, 1979; Olver, 1980; Martins, 1981; Temme, 1983; Chalbaud &
Martin, 1984; Nesbet, 1984; Seaton, 1984; Humblet, 1985; Thompson & Barnett,
1985; Dunster, 1989; Abad & Sesma, 1992; Olde Daalhuis, 1992 and 1993) have been
suggested for evaluating Coulomb and/or Whittaker functions. Three methods have
been used in our calculations.

The first method makes use of the expression of W in terms of Kummer functions,
that are in turn replaced by their power-series expansions. The method works well
for |z| < 10 provided y > |c[. In the case of u being smaller than |c[, W, . ,(z) can
be obtained by previous calculation of W/, ,,1,, and We,; ,1p41 (n integer such
that u+n > |c|) and repeated application of the recurrence (Buchholz, 1969, Sect.
7, Eq. (11b))

1
(L+2u)(k = 1/24 p)z
x (1=2p)(k—1/2—p)2 W js1(2) + 2u(262+1—4p* )W, ,(2)) . (3.30)

Wmufl(z) =

The second method, used for large |z|, benefits from the fact that the logarith-
mic derivative of W, W’ /W, can be easily calculated directly, avoiding the slowly
convergent series expansions. Obviously, the poles and zeros of the logarithmic
derivative are the zeros of, respectively, W and W’. To our knowledge, three differ-
ent continued fraction procedures can be used in the evaluation of the logarithmic
derivative of Wy ,(z). The first one (Aquilanti and Lagana, 1979) uses the identity

W u(2) = 241127220 (a,b, 2) (3.31)

to write
Wy . (2) 1 w1 Ulab,z2)
T Sk At B A 3.32
Wi, nu(2) SRR U(a,b,z)’ (3:32)

Then, the logarithmic derivative of U is related to the quotient of contiguous func-
tions (Abramowitz & Stegun, 1965, Eq. 13.4.25)

U'(a,b, z) U(a,b+1,z)
=1 .
Ul(a,b, 2) Ula,b,z) ’ (3:33)

and the last term is evaluated by means of the two recurrences (Abramowitz &
Stegun, 1965, Eqgs. 13.4.17 and 13.4.18)

U(a,b+1,z) = Ula,b,z)+aU(a+1,b+1,z), (3.34)
U(a,b,z) = z2U(a+1,b+1,2)+ (a— b+ 1)U(a+1,0,2), (3.35)
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combined to give

U(a,b+1,2) a
Yla,0+1l.2) 3.36
Ulab, 2) + L ab+l (3.36)
U(a+1,b+1,2)
U(a+1,b,2)

The second procedure makes use of the relation (Abramowitz & Stegun, 1965, Eq.
13.4.33)
We(2) 1 k1 Wepu(2)

Weulz) 2 2 2z Waale) (3.37)

between the logarithmic derivative and the quotient of contiguous Whittaker func-
tions. Then, the asymptotic expansion (Abramowitz & Stegun, 1965, Eq. 13.1.33)

W u(2) = 28e /2 5y (a,a—b+ 155 —1/2) (3.38)

is used to get
EWH+1,M(2) _ oFo(a—1,a—b;;—1/2)
z Wiu(2) B oFo(a,a—b+1;;—1/2)

(3.39)

and, finally, the right hand side of this expression is calculated by means of the
continued fraction expansion deduced from the three term recurrence

oFo(a—1,8-1;55t) =
(1 —(a+p- 1)15) oFo(a, B3 t) — aft? oFg (a1, B+1;;t),  (3.40)
that can be checked by comparing powers of ¢ in the two sides. The third continued

fraction procedure is similar to the second one except for the fact that the right
hand side of (??) is written in the form

oFo(a—1,a—b;;—1/2)

oFo(a,a—b+1;;-1/2)
oFo(a—1,a-b;; -1/z) oFp(a—b+1,a—1;;-1/z)
oFo(a—1,a=b+1;5-1/2) oFo(a—b+1,a;;-1/z)

(3.41)

and then the two quotients in the right hand side of this equation are replaced by
their well known (Jones & Thron, 1980) continued fraction expansion.

The third method is especially suited for the case of very low energies, |z] < 1.
It uses, like the first one, the expression of W in terms of Kummer functions, but,
these functions are replaced by, instead of a power series, an expansion in terms of
Bessel functions given by Buchholz (1969, Sect. 7,Eq. (16)). The resulting algorithm
has been thoroughly discussed in Abad & Sesma (1992).

We report, in Figs. 2 to 7, some trajectories of the zeros of W, ,(2) for several
fixed values of ¢ and continuously varying real u.
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F1G. 2. Zeros of W, ,,(2) for ¢ = 1. Only the first four trajectories of family I are shown. The
values of p are indicated by the numbers beside the trajectories. All trajectories of family IT are
contained in the short segment of the real axis drawn

4. Discussion of results

We have already pointed out, in Subsection 2.1, that the zeros can be grouped in
two families according to their behaviour as ¢ vanishes: zeros of family I approach
the zeros of H\" (ei™/2%/2), whereas those of family IT approach the origin. There
are, however, important differences between the cases of positive and negative c.

4.1 Positive ¢ (attractive Coulombian interaction)

The case of positive c is exemplified in Fig. 2, where the trajectories of the zeros
of W), ,(2), for ¢ = 1 and varying p, are shown. The zeros of family I appear
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FI1G. 3. Trajectories of family 11 zeros of W, ,(2) for ¢ = 1 and ¢ = 5. Only the first three
members of each family are shown

for © = 0 regularly spaced along an almost vertical line in the vicinity of the
negative imaginary semiaxis. Let us attach a label s = 1,2,3,... to each zero,
in accordance with its increasing modulus, and to its trajectory. As p increases
from 0 to approximately s, the zeros move upwards, their trajectories presenting
horizontal oscillations of period one unit in p. The oscillation amplitude (infinite for
¢ = 0) decreases as ¢ increases. For growing ;1 above s the zeros move in the second
quadrant along parabolic-like trajectories approaching those for ¢ = 0. The zeros
of family IT lie on the positive real semiaxis, presenting an accummulation point at
the origin. For a given ¢, these zeros move towards the origin as p increases; for
fixed p, they move to the right for increasing c. Figure 3 illustrates this behaviour.
Of course, these real zeros correspond to the zeros of U(a, b, z) discussed in Slater
(1960, Chap. 6). The correspondence, however, is not trivial: the parameters a and
b are held constant in the discussion in Slater (1960), whereas in our case a depends
on x,a=p+1/2—c/x. Also, those real zeros are in correspondence, in the case of
half integer values of i (integer values of the angular momentum), with the energies
of the bound states of a quantum particle of mass m in an attractive Coulombian
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potential with a hard core of radius Ry,

o0, for r < Ry,

V(r) = K ¢ (4.42)
— - f R
2mRo 1’ orr > fo,
the energies being given by
o,

= ——— 2z 4.43
8mR2 : (4.43)

4.2 Negative ¢ (repulsive Coulombian interaction)

In the case of negative ¢, the distinction between zeros of families I and IT is
clear only at low values of |¢|, namely, —0.25 < ¢ < 0. Moreover, even for such low
values of |c|, family I is in fact decomposed in two subfamilies, I.1 and 1.2, as can
be seen in Fig. 4. The zeros of subfamily 1.1, located for ;1 = 0 at approximately the
same positions as in the case of low positive ¢, move downwards along cycloid-like
trajectories, the “radius of the cycle” diminishing with increasing |c|. Besides these
trajectories, there are others, those of subfamily 1.2, coming from the Riemann
sheet 27 < argz < 4m, entering into the principal Riemann sheet 0 < argz < 27
at finite values of u, passing from the fourth quadrant to the third and then to the
second one, and finally approaching the trajectories for ¢ = 0 as y increases. Zeros
of family II are located for 4 = 0 in the second quadrant and, for increasing pu,
approach the origin as described at the end of Subsection 2.1.

That classification of trajectories in families and subfamilies is no longer valid for
¢ below —0.25. As ¢ decreases, more and more trajectories undergo a “hybridiza-
tion”like illustrated in Fig. 5. One trajectory of subfamily 1.2, namely the nearest to
the origin one, suffers, as c increases, a deformation tending to make it pass through
the origin. This happens for p = p, =n—1/4, n = 1,2,3,..., and ¢ = ¢, such
that HY,) |,
that, as ¢ decreases from c¢,, that trajectory “collides”, for certain discrete values
of ¢ and p, succesively with all trajectories of family II, interchanging “heads” (the
parts of the trajectories corresponding to p ~ 0) at each collision. In other words,
we conjecture that a double zero of W, ,(z) occurs for an infinity of pairs of values
of ¢ and u respectively below ¢, and above u,. This infinite sequence of pairs of
values (¢, 1) should have (¢, ;) as point of accumulation. After the infinite set of
collisions, the hybrid trajectory presents the head of the most external trajectory
of family IT and the “tail” (the part of the trajectory corresponding to u — co) of
the most internal one of subfamily 1.2. In Figs. 6 and 7, corresponding to ¢ = —1
and ¢ = —10, one can see respectively one and four of those hybrid trajectories.

(cn) = 0, as discussed in Subsection 2.2. The numerical results suggest
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F1G. 4. Zeros of Wc/z,u(z) for ¢ = —0.1. Only the first two trajectories of subfamily 1.1 and the
first four ones of subfamily 1.2 are shown. The excursions of the zeros through the Riemann sheet
27 < argz < 4w are represented by dotted lines. Trajectories of family II concentrate in a small
region near the origin and have not been drawn
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TABLE 2
Typical output of the Newton’s method applied to the location of the zeros of
WC/Z#(,Z). This has been expressed in terms of Kummer functions evaluated by
means of their power series expansions.

c 1 Rz Sz RWe s, (2) SWeyz,u(2)

1. 3.3 -3.00000000 2.50000000  0.875714E+00 —0.281576E+00
3.57179934 2.74660292  0.103602E+00 0.477182E 01
—3.65083627 2.80317456 —0.215425E-02 0.342191E-02
3.64958986 2.80007334 0.601440E 05 0.431460E 05
—3.64958560 2.80006893 0.589522E-09  —0.611905E-09

1. 33 2.00000000 3.00000000  0.165103E+01 0.367207E4-00
—2.62966145 —3.37883613  0.298855E+00 —0.143971E+00
-2.80972002 —-3.29837024 -0.886585E-02 0.133178E-01
—2.80440211 —3.30582657  0.897728E-05  —0.209375E-04
—2.80440764 —-3.30581477 -0.522181E-08 0.794308E-08

SEATON, M. J. 1984 The accuracy of iterated JWKB approximations for Coulomb
radial wave functions. Comput. Phys. Comm. 32, 115-119.
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Cambridge.

TEMME, N. M. 1983 The numerical computation of the confluent hypergeometric
function Ul(a, b, z). Numer. Math. 41, 63-82.
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Appendix

The trajectories shown in Figures 1 to 7 have been drawn by joining smoothly
points corresponding to zeros of W, /Zyu(z) for a given ¢ and a sequence of values
of u sufficiently close as to guarantee a safe interpolation. The Newton’s method
was used in the location of each zero. The iterative process was stopped when the
distance between two successive approximations was less than 5 x 1075, provided
that changes of sign in the real and imaginary parts of W, ,(z) occurred. The
typical output in the application of the Newton’s method is shown in Tables 2, 3,
and 4, corresponding respectively to the three methods mentioned in Sect. 3.

Needless to say, for values of z in the third and fourth quadrants (i. e., out of the
generally considered principal Riemann sheet —7m < arg z < 7) the circuital relation
for W, , (Buchholz, 1969, Sect. 2, Eq. (37)) was used.
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The Newton’s method applied to the location of the zeros of W, ,/W!

TABLE 3

ated by using a continued fraction procedure.

J. EsPARZA, J. L. LOPEZ AND J. SESMA

/%51

c I Rz Sz RW/W") S(W/W")
1. 3.7 —4.00000000 4.00000000 0.721723E-01  -0.315989E-01
-3.92296922  3.50513280 0.424731E-03 0.143299E-01
3.86920177  3.55319534 0.381341E 03 0.102098E 02
-3.86668723  3.55855341 0.776264E-06 —0.365855E-05
3.86669846  3.55853655 0.253726E 11 0.211474E 08

-1. 5.8 —=7.50000000 3.50000000 0.594223E-01  0.115845E+400
7.29649261  4.23135798 0.423043E 01 0.202296E 01
—6.87383414  4.22621877 —0.137454E-02 —-0.214992E-02
-6.89175048  4.21679838 —0.310938E-04 —0.947656E-05
—6.89200499  4.21685707 0.393998E-07 0.694421E-07

TABLE 4

The Newton’s method applied to the location of the zeros of W/, ,(z) using an

expansion in series of Bessel functions.

c I Rz Sz RWe s, u(2) SWeys,u(2)
-0.24 0.3 -0.27000000 0.10000000 —0.258442E-01 0.866761E-03
0.27116988  0.10797150 0.135966E 02 0.311493E 02

-0.27194158 0.10732012 -0.104012E-04 0.193682E-04

—0.27193698  0.10732470 0.147868E-08 —0.150984E-08

-1. 0.7 -1.00000000  0.60000000 0.259468E-01  0.110168E-+00
0.91756919  0.59219225 0.943648E 03 0.137193E 02

—0.91866550  0.59279505 0.350303E-04 0.190672E-04

—0.91864871  0.59277099 0.197003E-08 0.648940E-09




