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FOR LARGE ORDER PARAMETER
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Abstract. The asymptotic behavior of the Whittaker functions Mκ, µ(z) and
Wκ, µ(z) for large modulus of the parameter κ is considered. Asymptotic expansions
in descending powers of

√
κ are derived. The κ-independent coefficients of these

expansions can be calculated in a simply way making these approximations quite
useful in practise. An explicit error bound for the expansion of Mκ, µ(z) is also
obtained.
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1. Introduction. The Whittaker functions Mκ, µ(z) and Wκ, µ(z) have acquired
an ever increasing significance due to their frequent use in applications of mathematics
to physical and technical problems. Most of their known properties are collected in
monographs [4], [12], and in general treatises on special functions [2], [6, vol 2], [14].

Important research work has been developed during recent decades for obtaining
asymptotic approximations of Mκ, µ(z) and Wκ, µ(z) for large values of the variable z
and/or the parameters κ and µ. A quite complete survey of the results obtained before
1975 can be found in [10] and references therein. It was pointed out in this article that
there were several unsolved problems in this field at that time. One of these challenges
was to obtain uniform asymptotic approximations for the case |µ| → ∞. This problem
was satisfactory solved independently by Temme [13] and Olver [11]. They obtained
uniform asymptotic approximations of these functions with respect to unrestricted
values of z ∈ (0,∞) and bounded real values of κ/µ in terms of parabolic cylinder
functions. A second outstanding problem was the case |κ| → ∞. This task has been
solved more recently by Dunster [5]. He has obtained an asymptotic approximation of
Mκ, µ(z) and Wκ, µ(z) for large real values of κ in terms of Airy and Bessel functions.
These expansions are uniformly valid for real values of κ and µ verifying 0 ≤ µ/κ < 1.

The uniformity of the expansion is an important theoretical property but, as a
general rule, uniform asymptotic expansions are much more involved than nonuniform
expansions. In this way, the uniform asymptotic expansions proposed by Temme [13]
and Olver [11] for the Whittaker functions for large |µ| do not have an easy practical
implementation. The coefficients of these expansions must be obtained by means of
intricate equations that involve the asymptotic variable µ. Something similar happens
with the uniform asymptotic expansions proposed by Dunster [5] for large |κ|. The
coefficients of these expansions must be obtained by means of intricate equations that
involve the asymptotic variable κ.

Therefore, for practical computations, simplicity of the expansion may be a more
important property than uniformity. Much simpler asymptotic expansions (although
not uniform) of the Whittaker functions for large |µ| and bounded values of κ and z
can be found for example in [4, sec. 7.2]. There, we can find cleaner expansions in
inverse powers of µ whose µ-independent coefficients are computed in an easy way.
On the other hand, a clean expansion in inverse powers of κ with κ-independent
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coefficients is not available in the literature.
In this paper we obtain asymptotic expansions of Mκ, µ(z) and Wκ, µ(z) in the

sequence κ−n/2 for bounded values of µ and z1. The coefficients of the expansion
are κ-independent and can be obtained in a systematic way. These properties make
the expansions quite useful for practical calculations. The expansion of Mκ, µ(z) is
accompanied also by an error bound.

As a disadvantage over the expansion given in [5], the expansion presented here
is not uniform. As an analytic advantage, it is a clean expansion in inverse powers
of
√

κ with κ-independent and easily calculable coefficients. Besides, the expansion
holds not only for real values of κ, but also for complex values.

In section 2, the asymptotic expansion of Mκ, µ(z) in the sequence κ−n/2 and a
bound for the remainder are derived. This expansion is then used for obtaining an
asymptotic approximation of Wκ, µ(z) for large κ. A brief summary is postponed to
section 3.

2. Expansions of Mκ, µ(z) and Wκ, µ(z) in descending half-integer powers
of κ. The starting point is a convergent expansion of the Whittaker function Mκ, µ(z)
in series of Bessel functions given by Buchholz [4, Sec. 7, Eq. (16)]. It reads

Mκ, µ(z) = Γ(2µ + 1) 22µzµ+ 1
2

∞∑
n=0

p(2µ)
n (z)

J2µ+n(2
√

zκ)
(2
√

zκ)2µ+n
,(1)

where the p
(2µ)
n (z) represent polynomials in z2, that we call Buchholz polynomials.

These are defined by

p(ν)
n (z) =

(iz)n

2πi

∫ (0+)

exp
(

iz

2

(
cot v − 1

v

)) (
sin v

v

)ν−1
dv

vn+1
,(2)

and generated by the function

exp
(−z

2

(
coth t− 1

t

))(
sinh t

t

)ν−1

=
∞∑

n=0

p(ν)
n (z)

(
− t

z

)n

.(3)

They can also be written in the form [1]

p(ν)
n (z) =

(iz)n

n!

[n/2]∑

k=0

(
n
2k

)
f

(ν)
k gn−2k(z),(4)

as a sum of products of polynomials in ν and in z, separately, easily obtainable by
means of the recurrence relations

f
(ν)
0 = 1, f (ν)

m =
1− ν

2

m−1∑

k=0

(
2m− 1

2k

)
4m−k|B2(m−k)|

m− k
f

(ν)
k ,(5)

g0(z) = 1, gm(z) = − iz

4

[(m−1)/2]∑

k=0

(
m− 1

2k

)
4k+1|B2(k+1)|

k + 1
gm−2k−1(z),(6)

1The asymptotic expansion of Mκ, µ(z) in inverse powers of
√

κ has been obtained previously in
ref. [8], but only for a certain region of values of κ and z.
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where the B2n denote the Bernoulli numbers [2, Table, 23.2]. In what follows µ ∈
C/ \ − 1

2N , the set − 1
2N =

{− 1
2 ,−1,− 3

2 ,−2, . . . ,
}

being excluded since Mκ, µ(z) and
Wκ, µ(z) are irregular at those values of µ. Besides, we consider for z, µ and κ only
the main argument belonging to the sector (−π, π]. For obtaining the asymptotic
expansion of Mκ, µ(z) in inverse powers of

√
κ we will need the following lemmas.

Lemma 2.1. The Buchholz polynomials are bounded in the form

|p(ν)
n (z)| ≤ |z|n

2n
σ(ν)ea|z|+2π|Im(ν)|,(7)

where

a =
1
4

[
1 +

cosh(2)
2sin(2)

]
, σ(ν) =





(
cosh(2)

2

)Re(ν)−1

if Re(ν) ≥ 1
(

sin(2)
2

)Re(ν)−1

if Re(ν) < 1.
(8)

Proof. If we choose the contour |v| = 2 in the definition (2) of Buchholz polyno-
mials, we obtain

|p(ν)
n (z)| ≤ I(ν)(z)

|z|n
2n

,(9)

where

I(ν)(z) =
1
4π

∫

|v|=2

∣∣∣∣exp
{

iz

2

(
cot v − 1

v

)}∣∣∣∣
∣∣∣∣∣
(

sin v

v

)ν−1
∣∣∣∣∣ |dv|.(10)

On the circle |v| = 2 we have

|cos(v)| ≤ cosh(2), sin(2) ≤ |sin(v)| ≤ cosh(2).(11)

Using these inequalities to bound the integrand in (10), equations (7)-(8) follow triv-
ially.

Lemma 2.2. The Bessel functions satisfy the inequality

|J2µ+n(z)| ≤ e5π|Im(µ)|
(

eIm(z) + e−Im(z) +
αn(µ, z)

π

)
, n = 1, 2, 3, ...,(12)

where

αn(µ, z) ≡




1 if 2Re(µ) ≥ 1− n
ε−1 if Re(µ) ≥ −1, |z| 6= 0

eεΓ(−1− 2Re(µ))ε2Re(µ)+1 if Re(µ) ≤ −1, |z| 6= 0
(13)

and ε is any number verifying 0 < 2ε ≤ |Re(z)| if Re(z) 6= 0 or 0 < 2ε ≤ |Im(z)| if
Re(z) = 0.

Proof. From [2, Eq. 9.1.22] and [2, Eqs. 9.6.3, 9.6.20] we have

J2µ+n(z)=
1
π

∫ π

0

cos(z sinθ − (2µ + n)θ)dθ

− sin(π(2µ + n))
π

∫ ∞

0

e−z sinh(t)−(2µ+n)tdt, |Arg(z)| < π

2
,(14)



4 J. L. LÓPEZ

J2µ+n(xeiπ/2)=eiπ(2µ+n)/2

[
1
π

∫ π

0

ex cosθcos((2µ + n)θ)dθ

− sin(π(2µ + n))
π

∫ ∞

0

e−x cosh(t)−(2µ+n)tdt

]
, x ≥ 0.(15)

On the one hand, for 2Re(µ) + n ≥ 1, we can bound the integrand in the second
integral of (14) by using sinh(t) ≥ 0 and |e−(2µ+n)t| ≤ e−t. On the other hand,
we use e−nt ≤ e−t in the second integral of (14), perform the change of variable
y =Re(z)(et − 1)/2 and bound the integrand by using y/Re(z) ≥ 0 if 1 + Re(µ) ≥ 0
and also Re(z) ≥ 2ε if 1+Re(µ) ≤ 0. A bound for the integrand in the second integral
of (15) is obtained in a similar way, but using cosh(t) ≥sinh(t) and x =Im(z) instead
of Re(z). Bounding also the integrands in the first integrals of (14) and (15) we obtain

|J2µ+n(z)| ≤ e2π|Im(µ)|
(

eIm(z) + e−Im(z) +
αn(µ, z)

π

)
, Re(z) ≥ ε > 0,(16)

|J2µ+n(xeiπ/2)| ≤ e3π|Im(µ)|
(

ex + e−x +
αn(µ, x)

π

)
, x ≥ ε > 0.(17)

Finally, using the analytic continuation property [2, Eq. 9.1.35] of the Bessel functions
we obtain (12)-(13).

Theorem 2.3. For bounded values of z 6= 0 and µ, large values of |κ| and in the
sector |Arg(z)+Arg(κ)| < 2π, the Whittaker function Mκ, µ(z) admits the asymptotic
expansion

Mκ, µ(z) =
Γ(2µ + 1)z

1
4

√
πκµ+ 1

4


cos

(
2
√

zκ− µπ − π

4

) bN/2c∑
n=0

M2n(µ, z)
(−κ)n

− 1√
κ

sin
(
2
√

zκ− µπ − π

4

) b(N−1)/2c∑
n=0

M2n+1(µ, z)
(−κ)n

+ R
(µ)
N (z, κ)


 ,(18)

where the coefficients of the expansion Mn(µ, z) are given by

Mn(µ, z)=
1

(4
√

z)n

n∑
m=0

(−2)mp(2µ)
m (z)

(2µ− n + 2m + 1/2)2(n−m)

(n−m)!
.(19)

For |κ| ≥ |z|/4 and in the sector |Arg(z)+Arg(κ)| ≤ π, the remainder term R
(µ)
N (z, κ)

is an O(κ−N/2−1/2) quantity bounded by

∣∣∣R(µ)
N (z, κ)

∣∣∣ ≤
[√

π

2N

N∑
n=0

2n|(2µ + 2n−N − 1/2)2(N−n+1)|
(N − n + 1)!

e|Im(2
√

zκ−µπ)|

×Γ((N − n)/2 + 3/2)|p(2µ)
n (z)|

Γ((N − n)/2 + 1)
exp

{
π|(2µ + n)2 − 1/4|

2|2√zκ|
}

+
2√
π
|zκ|1/4σ(2µ)ea|z|+10π|Imµ|(π + αN+1(µ, 2

√
zκ)

)] ∣∣∣∣
√

z

2
√

κ

∣∣∣∣
N+1

,(20)

where αn(µ, z) is given in (13) and σ(2µ) and a in (8).
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Proof. From (1) and using Jν(z) = (H(1)
ν (z) + H

(2)
ν (z))/2, where H

(1)
ν and H

(2)
ν

represent the Hankel functions, we have

Mκ, µ(z) = Γ(2µ+1)z
1
2 κ−µ

[ N∑
n=0

p
(2µ)
n (z)

2(2
√

zκ)n

×
(
H

(1)
2µ+n(2

√
zκ) + H

(2)
2µ+n(2

√
zκ)

)
+ r

(µ)
N (z, κ)

]
,(21)

where

r
(µ)
N (z, κ) =

∞∑

n=N+1

p
(2µ)
n (z)

(2
√

zκ)n
J2µ+n(2

√
zκ).(22)

Now we can use the asymptotic expansions [9, Chap. 7, Eqs. (4.03) and (4.04)],

H(1)
ν (t)=

√
2
πt

ei(t−ν π
2−π

4 )

(
N∑

m=0

(−1)m

(2it)m

(ν −m + 1
2 )2m

m!
+ η(1)

N (ν, t)

)
,(23)

H(2)
ν (t)=

√
2
πt

e−i(t−ν π
2−π

4 )

(
N∑

m=0

1
(2it)m

(ν −m + 1
2 )2m

m!
+ η(2)

N (ν, t)

)
,(24)

simultaneously valid for all ν when t is confined to the sector |Arg(t)| < π. For
|Arg(t)| ≤ π/2, the error term η(1)

N (ν, t) is an O(t−N−1) quantity bounded by [9,
Chap. 7, Eqs. (13.02)-(13.05)],

|η(1)
N (ν, t)| ≤

√
π(ν −N − 1/2)2(N+1)Γ(N/2 + 3/2)

2N (N + 1)!Γ(N/2 + 1)|t|N+1
exp

{
π|ν2 − 1/4|

2|t|
}

,(25)

and the same holds for η(2)
N (ν, t). Then, introducing (23)-(24) into equation (21) and

grouping powers of κ−1/2 we obtain, for |Arg(z) + Arg(κ)| < 2π,

Mκ, µ(z)=
Γ(2µ + 1)z

1
4

2
√

πκµ+ 1
4

[
ei(2

√
zκ−µπ−π

4 )

(
N∑

n=0

(−1)nMn(µ, z)
(i
√

κ)n
+ ρ(1)

N (µ, z, κ)

)

+e−i(2
√

zκ−µπ−π
4 )

(
N∑

n=0

Mn(µ, z)
(i
√

κ)n
+ ρ(2)

N (µ, z, κ)

)

+2π1/2(zκ)1/4r
(µ)
N (z, κ)

]
,(26)

where the coefficients Mn(µ, z) are given in (19) and the remainder term ρ(1)
N (µ, z, κ)

is an O(κ−N/2−1/2) quantity bounded, for |Arg(z)+Arg(κ)| ≤ π, by

|ρ(1)
N (µ, z, κ)| ≤

√
π

2N

N∑
n=0

2n|(2µ + 2n−N − 1/2)2(N−n+1)|
(N − n + 1)!

Γ((N − n)/2 + 3/2)
Γ((N − n)/2 + 1)

× |p(2µ)
n (z)|exp

{
π|(2µ + n)2 − 1/4|

2|2√zκ|
}

1
|2√zκ|N+1

,(27)

and the same holds for ρ(2)
N (µ, z, κ). To prove (18)-(20), we still have to show that

r
(µ)
N (z, κ) in equation (26) is bounded by an O(κ−(N/2+1/2)) quantity. But using
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lemmas 1 and 2 we have, for |w| ≥ |z| and n ≥ N + 1,
∣∣∣∣∣
p
(2µ)
n (z)
wn

J2µ+n(w)

∣∣∣∣∣ ≤
1
2n

σ(2µ)ea|z|+9π|Im(µ)|

×
(

eIm(w) + e−Im(w) +
αN+1(µ,w)

π

) ∣∣∣ z

w

∣∣∣
N+1

,(28)

where σ(2µ) and a are given in (8). Therefore, using the definition (22) of r
(µ)
N (z, κ)

and this last inequality, we find that the remainder r
(µ)
N (z, κ) in the expansion (26) is

bounded by

|r(µ)
N (z, κ)|≤ σ(2µ)ea|z|+9π|Im(µ)|

×
(

eIm(2
√

zκ) + e−Im(2
√

zκ) +
αN+1(µ, 2

√
zκ)

π

) ∣∣∣∣
√

z

2
√

κ

∣∣∣∣
N+1

.(29)

After straightforward operations and using (27) and (29) in (26) we obtain (18) and
(20).
Remark A recursion relation for the coefficients Mn(µ, z) in the expansion (18) can
be obtained from Olver’s method of deriving asymptotic expansions from differential
equations with a large parameter [9, Chap. 10]. The Whittaker differential equation
can be written in the form

d2w

dz2
+

κ

z
w = g(z)w,(30)

where g(z) = (z2 + 4µ2 − 1)(2z)−2. After the transformations z = ζ2/4 and W =
z−1/4w we obtain

d2W

dζ2
+ κW = ψ(ζ)W, ψ(ζ) =

ζ2

16
+

4µ2 − 1/4
ζ2

.(31)

The asymptotic expansion in the sequence (
√

κ)−n of two independent solutions
W+(κ, ζ) and W−(κ, ζ) (analytic for z 6= 0) of the above differential equation are
given by [9, chap 10, theorem 3.1]

W±(κ, ζ) ∼ e±i
√

κζ
∞∑

k=0

Mn(µ, z)
(∓i

√
κ)n

,(32)

where the coefficients Mn(µ, ζ2/4) are defined recursively by

Mn+1(µ, ζ2/4) =
1
2

dMn(µ, ζ2/4)
dζ

− 1
2

∫
ψ(ζ)Mn(µ, ζ2/4)dζ,(33)

with M0(µ, ζ2/4) = 1. From the asymptotic behavior of Mκ,µ(z) for large κ we see
that

Mκ,µ(z) =
Γ(2µ + 1)z1/4

2
√

πκµ+1/4

(
e−i(µπ+π/4)W+(κ, ζ) + ei(µπ+π/4)W−(κ, ζ)

)
.(34)

The coefficients of the expansion Mn(µ, z) given explicitly in (19) are also given by
the recurrence (33) with the integration constants set to zero. Therefore, we obtain
of course the expansion (18).
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Olver’s method provides also an error bound for the remainder terms in the
expansions (32) and therefore, for the remainder in the expansion of Mκ,µ(z). But,
as a consequence of the divergence of the coefficients Mn(µ, ζ2/4) for large ζ, these
bounds cannot be uniformly defined for arbitrarily large z (see [9, chap 10, theorem
3.1] for details).
Remark An asymptotic approximation of Wκ, µ(z) can be obtained from the expan-
sion (18) of Mκ, µ(z) and the relations [2, Eqs. 6.1.17 and 13.1.34],

Wκ, µ(z) =
Γ(−2µ)Γ(κ + µ + 1/2)

π
cos[π(κ + µ)]Mκ, µ(z)+

Γ(2µ)Γ(κ− µ + 1/2)
π

cos[π(κ− µ)]Mκ,−µ(z).(35)

Remark The expansion (18) has been obtained for |Arg(z)+Arg(κ)| < 2π and the
bound (20) for |Arg(z)+Arg(κ)| ≤ π. We can extend these parameters to the whole
complex plane by using the reflection formula [5, Eq. 2.11],

M−κ,µ(ze±πi) = e±(µ+1/2)πiMκ,µ(z).(36)

3. Summary. For bounded values of z 6= 0 and µ and large values of |κ|, the
asymptotic expansion of the Whittaker function Mκ, µ(z) in inverse powers of

√
κ is

given in equation (18) for |Arg(z)+Arg(κ)| < 2π. The coefficients of this expansion
are given in equation (19) and verify recurrence (33). A bound for the remainder after
N terms is given in equation (20) for |Arg(z)+Arg(κ)| ≤ π. In order to cover the
whole complex z, κ and µ-plane, equations (18) and (20) should be used combined
with (36).

For bounded values of z 6= 0 and µ and large values of |κ|, an asymptotic approx-
imation of the Whittaker function Wκ, µ(z) in inverse powers of

√
κ can be obtained

combining (18) and (35). The Stirling asymptotic expansions of the gamma functions
in (35) should be introduced for obtaining an asymptotic approximation of Wκ,µ(z)
in inverse powers of

√
κ and κ± µ + 1/2.
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