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ABSTRACT

This is a second paper on finite exact representations of certain polynomials in terms

of Hermite polynomials. The representations have asymptotic properties and include

new limits of the polynomials, again in terms of Hermite polynomials. This time

we consider the generalized Bernoulli, Euler, Bessel and Buchholz polynomials. The

asymptotic approximations of these polynomials are valid for large values of a certain

parameter. The representations and limits include information on the zero distribution

of the polynomials. Graphs are given that indicate the accuracy of the first term

approximations.
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1. Introduction

Generalized Bernoulli, Euler polynomials, Bessel and Buchholz polynomials of degree
n, complex order µ and complex argument z, denoted respectively by Bµ

n(z), Eµ
n(z),

Y µ
n (z) and Pµ

n (z), can be defined by their generating functions [ [11], chap. 6],

wµewz

(ew − 1)µ
=

∞∑
n=0

Bµ
n(z)
n!

wn, |w| < 2π, (1)

2µewz

(ew + 1)µ
=

∞∑
n=0

Eµ
n(z)
n!

wn, |w| < π, (2)

[ [4], page 181],

1√
1− 2zw

(
2

1 +
√

1− 2zw

)µ

e2w/(1+
√

1−2zw ) =
∞∑

n=0

Y µ
n (z)
n!

wn, |2zw| < 1, (3)

and [ [2], sect. 3], in a slightly different notation,

ez(cot w−1/w)/2

(
sin w

w

)µ

=
∞∑

n=0

Pµ
n (z) wn, |w| < π. (4)

The generalized Bernoulli and Euler polynomials play an important role in the cal-
culus of finite differences. In fact, the coefficients in all the usual central-difference
formulae for interpolation, numerical differentiation and integration, and differences in
terms of derivatives can be expressed in terms of these polynomials [11]. Many prop-
erties of these polynomials can be found in [[3], chap. 6 ], [[5], vol. 1, chap. 1], [10]
and [11]. An explicit formula for the generalized Bernoulli polynomials can be found in
[12]. Asymptotic expansions in terms of elementary functions and in terms of gamma
and polygamma functions are obtained in [16]. Properties and explicit formulas for the
generalized Bernoulli and Euler numbers can be found in [9], [14], [15] and references
there in.

The generalized Bessel polynomials form a set of orthogonal polynomials on the unit
circle in the complex plane. They are important in certain problems of mathematical
physics; for example, they arise in the study of electrical networks and when the wave
equation is considered in spherical coordinates. For a historical survey and discussion
of many interesting properties, we refer to [6]. New asymptotic expansions of Y µ

n (x)
(and its zeros) for large values of n are given in [17].

Buchholz polynomials are used for the representation of the Whittaker functions as
convergent series expansions of Bessel functions [2]. They appear also in the convergent
expansions of the Whittaker functions in ascending powers of their order and in the
asymptotic expansions of the Whittaker functions in descending powers of their order
[7]. Explicit formulas for obtaining these polynomials may be found in [1].
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In our first paper [8] it has been shown that Jacobi, Gegenbauer, Laguerre and
Tricomi-Carlitz polynomials have asymptotic representations in terms of the Hermite
polynomials

Hn(x) = n!
bn/2c∑

k=0

(−1)k

k! (n− 2k)!
(2x)n−2k.

These asymptotic representations include well-known limits of the polynomials in terms
of the Hermite polynomials, and provide a powerful tool for approximating the zeros of
these polynomials in terms of the zeros of the Hermite polynomials in the asymptotic
limit [8].

The polynomials of the previous paper are all orthogonal on a set of the real line.
The present group is quite different. Only the Bessel polynomials are orthogonal, but
not in the standard sense: they are orthogonal on the unit circle. In a certain sense the
polynomials of the present group become orthogonal if the parameter µ becomes large.
We give similar asymptotic representations for the new group as in the previous paper
for the asymptotic limit |µ| → ∞. From these representations we can derive

lim
µ→∞

(
24
µ

)n/2

Bµ
n

(
µ

2
+

√
µ

6
z

)
= Hn(z),

lim
µ→∞

(
8
µ

)n/2

Eµ
n

(
µ

2
+

√
µ

2
z

)
= Hn(z),

lim
µ→∞

in (2µ)n/2 Y µ
n

[
− 2

µ

(
1 + i

√
2
µ

z

)]
= Hn(z),

lim
µ→∞

(
6
µ

)n/2

Pµ
n

(
−2

√
6µz

)
=

1
n!

Hn(z).

¿From these limits we can obtain approximations for the zeros of these polynomials in
the asymptotic regime.

In the following section we give the principles of the Hermite-type asymptotic ap-
proximations used in this paper. In later sections we apply the method to obtain
expansions for the generalized Bernoulli and Euler polynomials, and the Bessel and
Buchholz polynomials. We also obtain estimates of their zeros for large µ.
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2. Expansions in terms of Hermite polynomials

The Hermite polynomials have the generating function

e2zw−w2
=

∞∑
n=0

Hn(z)
n!

wn, z, w ∈ C,

which gives the Cauchy-type integral

Hn(z) =
n!
2πi

∫

C
e2zw−w2 dw

wn+1
, (5)

where C is a circle around the origin and the integration is in positive direction.
The polynomials defined in (1)-(4), as well as many other well-known polynomials,

may be defined by a generating function F (z, w) in the form

F (z, w) =
∞∑

n=0

pn(z)wn, (6)

where F : C/×C/ → C/ is analytic with respect to w in a domain that contains the origin.
We assume that F (z, 0) = p0(z) = 1 and that the polynomials pn(z) are independent
of w.

We have the Cauchy-type integral representation

pn(z) =
1

2πi

∫

C
F (z, w)

dw

wn+1
,

where C is a circle around the origin inside the domain where F is analytic (as a function
of w).

We write the generating function F (z, w) of pn(z) in the form

F (z, w) = eA(z)w−B(z)w2
f(z, w), (7)

where A(z) and B(z) are independent of w, and it follows that

pn(z) =
1

2πi

∫

C
eA(z)w−B(z)w2

f(z, w)
dw

wn+1
. (8)

The function f is also analytic around the origin w = 0. Therefore, we can expand

f(z, w) = 1 + [p1(z)−A(z)]w +
[
p2(z)−A(z)p1(z) + B(z) +

1
2
A(z)2

]
w2 + . . .

=
∞∑

k=0

ck(z)wk.

(9)
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Substituting this in (8) and using (5), we obtain the finite expansion

pn(z) = (B(z))n/2
n∑

k=0

ck(z)
(B(z))k/2

Hn−k(ζ)
(n− k)!

, ζ =
A(z)

2
√

B(z)
, (10)

because terms with k > n do not contribute to the integral in (8). If B(z) happens to
be zero for a special z−value, say z0, we write

pn(z0) = [A(z0)]n
n∑

k=0

ck(z0)
[A(z0)]k (n− k)!

. (11)

In the examples considered in the following sections, the choice of A(z) and B(z) is
based on our requirement that c1(z) = c2(z) = 0, in order to make the function f(z, w)
close to 1 near the origin (note that f(z, 0) = 1). Then, the generating function F (z, w)
is close to the generating function of the Hermite polynomials. Using c0(z) = 1 and
requiring c1(z) = c2(z) = 0, we have, from (9),

A(z) = p1(z), B(z) =
1
2
p2
1(z)− p2(z). (12)

We can summarize the above discussion in the following
Proposition 2.1. Consider the polynomials pn(z) defined in (6) by a generating

function F (z, w) analytic in w = 0 and normalized in the form F (z, 0) = 1. Then,
they may be represented as the finite sum (10) if p2

1(z) − 2p2(z) 6= 0, and as the finite
sum (11) if p2

1(z0)− 2p2(z0) = 0. The functions ck(z) are the coefficients of the Taylor
expansion of

F (z, w)exp
{(

1
2
p1(z)2 − p2(z)

)
w2 − p1(z)w

}

at w = 0, c0 = 1, c1 = c2 = 0 and Hn are the Hermite polynomials.
In the following sections we verify if the finite sum in (10) yields asymptotic repre-

sentations for the generalized Bernoulli, Euler, Bessel and Buchholz polynomials. The
special choice of A(z) and B(z) given in (12) is crucial for obtaining asymptotic prop-
erties. To prove these properties we will use the following lemma.

Lemma 2.1. Let φ(w) be analytic at w = 0, with Maclaurin expansion of the form
φ(w) = µwn(a0 + a1w + a2w

2 + . . .) + b1w + b2w
2 + . . ., where n is a positive integer,

ak, bk are complex numbers that do not depend on the complex number µ, a0 6= 0; let ck

denote the coefficients of the power series of eφ(w), that is, eφ(w) =
∑∞

k=0 ckwk. Then

ck = O
(
|µ|bk/nc

)
, µ →∞.

Proof. The proof follows from expanding eφ(w) =
∑∞

k=0[φ(w)]k/k!, substituting the
power series of φ and collecting equal powers of w.
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3. Generalized Bernoulli polynomials

¿From (1) we obtain the following Cauchy-type integral for the generalized Bernoulli
polynomials

Bµ
n(z) =

n!
2πi

∫

C

wµewz

(ew − 1)µ

dw

wn+1
,

where C is a circle around the origin with radius less than 2π. We assume that F (z, w) =
wµewz/(ew − 1)µ assumes real values for real values of z, w and µ.

We have

Bµ
0 (z) = 1, Bµ

1 (z) = z − µ

2
, Bµ

2 (z) = z2 − µz +
µ(3µ− 1)

12
.

Hence, by (12) and pn(z) = Bµ
n(z)/n!,

A(z) = z − µ

2
, B(z) =

µ

24
,

and by (10),

Bµ
n(z) = n!

( µ

24

)n/2 n∑

k=0

ck(µ)
(n− k)!

(
24
µ

)k/2

Hn−k

(√
6(z − µ/2)√

µ

)
. (13)

Observe that this representation shows the symmetry of Bµ
n(z) with respect to the point

z = 1
2µ.

The coefficients ck(µ) of the expansion are given in the following lemma.

Lemma 3.1. The odd coefficients cn(µ) in the expansion (13) vanish,

c2n+1(µ) = 0 ∀ n ≥ 0, (14)

and the even ones are independent of z; they are given for n ≥ 2 by the recurrence

c2n(µ) =
µ

12n

n∑

k=2

(2k + 1)(k − 3) + 6
(2k + 1)!

c2(n−k)(µ)− 1
n

n∑

k=1

(n− k)
(2k + 1)!

c2(n−k)(µ), (15)

with c0(µ) = 1, c2(µ) = 0 and satisfy

c2n(µ) = O(µbn/2c), |µ| → ∞. (16)

Proof. Using equation (7), the function f(z, w) of the generalized Bernoulli polynomials
reads

f(z, w) =
wµeµ(1+w/12)w/2

(ew − 1)µ
=

∞∑

k=0

ck(µ)wk. (17)
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This is an even function in the variable w and (14) follows. It is independent of z and so
are the coefficients ck (which only depend on µ). Moreover, it satisfies the differential
equation

µ

[
1 +

(
1
2
− 1

w
− w

12

)
(ew − 1)

]
f(z, w) + (ew − 1)

d

dw
f(z, w) = 0,

and introducing the expansion (17) (with c2n+1(µ) = 0) in this differential equation we
obtain (15). The function f(z, w) can be written in this case in the form

f(z, w) = eµw4φ1(w), φ1(w) =
1

2880
+O (

w2
)
, w → 0,

and φ1(w) does not depend on µ and z. Hence, the proof of (16) follows from Lemma
2.1.

Proposition 3.1. The generalized Bernoulli polynomials Bµ
n(z) have the finite

expansion in terms of Hermite polynomials

Bµ
n(z) =

( µ

24

)n/2

Hn(ζ) + n!
( µ

24

)n/2
bn/2c∑

k=2

c2k(µ)
(

24
µ

)k
Hn−2k(ζ)
(n− 2k)!

, (18)

where

ζ =
√

6(z − µ/2)√
µ

(19)

and c2k(µ) are given in (15). This is actually an asymptotic expansion of Bµ
n(z) for

|µ| → ∞ with respect to the sequence µbk/2c−k, uniformly with respect to ζ.

Proof. (18) follows trivially by using (13) and Lemma 3.1. The asymptotic property
of (18) follows from (16). If |ζ| is bounded, the combination c2k(µ)µ−k in (18) gives
the asymptotic nature for large values of |µ|; if |ζ| is not bounded, then the property
Hn(ζ) = O(ζn) gives extra asymptotic convergence in the sum in (18).

Figure 1 shows the accuracy of the approximation

Bµ
n(z) '

( µ

24

)n/2

Hn

(√
6(z − µ/2)√

µ

)
(20)

for n = 10, real z and several values of µ.

3.1. Approximating the zeros

When computing approximations of the zeros of the generalized Bernoulli polyno-
mials for large values of µ we start with the zeros of the Hermite polynomial Hn(ζ) in
(20).
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Let bn,m and hn,m be the m−th zero of Bµ
n(z) and Hn(z), respectively, m =

1, 2, . . . , n. Then, for given µ and n we take the relation for ζ given in (19) to compute
a first approximation of bn,m by writing

bn,m ∼ µ

2
+

√
µ

6
hn,m.

For µ = 10, 20, 30 and n = 10, the best relative accuracy in the zeros is ∼ 10−3 and the
worst result (for the largest zero) is ∼ 10−2. For µ = 40, 50 it oscillates between 10−3

and 10−4, whereas for µ = 100 it oscillates between 10−4 and 10−5.

x

6 7 8

x

106
0

-1e+05

5e+04

-5e+04

1e+05

1.5e+05

8 12 14

(a) µ = 10 (b) µ = 20

x

16 18 20

x

26242220181614
0

-2e+06

2e+06

4e+06

(c) µ = 30 (d) µ = 40

Figure 1. Solid lines represent Bµ
10(x) for several values of µ, whereas dashed lines represent

the right-hand side of (20).
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4. Generalized Euler polynomials

¿From (2) we obtain the following Cauchy-type integral for the generalized Euler
polynomials

Eµ
n(z) =

n!
2πi

∫

C

2µewz

(ew + 1)µ

dw

wn+1
,

where C is a circle around the origin with radius less than π. We assume that F (z, w) =
2µewz/(ew + 1)µ assumes real values for real values of z, w and µ.

We have

Eµ
0 (z) = 1, Eµ

1 (z) = z − µ

2
, Eµ

2 (z) = z2 − µz +
µ(µ− 1)

4
.

Hence, by (12) and pn(z) = Eµ
n(z)/n!,

A(z) = z − µ

2
, B(z) =

µ

8
.

It follows from (10) that

Eµ
n(z) = n!

(µ

8

)n/2 n∑

k=0

ck(µ)
(n− k)!

(
8
µ

)k/2

Hn−k

(√
2(z − µ/2)√

µ

)
, (21)

where the coefficients ck(µ) of the expansion are given below. This representation shows
the symmetry of Eµ

n(z) with respect to the point z = 1
2µ.

We have the following results. The proofs are as in the case of the Bernoulli poly-
nomials.

Lemma 4.1. The odd coefficients cn(µ) in the expansion (21) vanish,

c2n+1(µ) = 0 ∀ n ≥ 0, (22)

and the even ones are independent of z; they are given for n ≥ 2 by the recurrence

c2n(µ) =
µ

16n

n∑

k=2

2k − 3
(2k − 1)!

c2(n−k)(µ) +
1
2n

n∑

k=2

(k − n− 1)
(2k − 2)!

c2(n−k+1)(µ), (23)

where c0(µ) = 1, c2(µ) = 0, and satisfy

c2n(µ) = O(µbn/2c), |µ| → ∞. (24)

Proposition 4.1. The generalized Euler polynomials Eµ
n(z) have the finite expansion

in terms of Hermite polynomials

Eµ
n(z) =

(µ

8

)n/2

Hn(ζ) + n!
(µ

8

)n/2
bn/2c∑

k=2

c2k(µ)
(

8
µ

)k
Hn−2k(ζ)
(n− 2k)!

, (25)
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where

ζ =
√

2(z − µ/2)√
µ

(26)

and ck(µ) are given in (23). This is actually an asymptotic expansion of Eµ
n(z) for

|µ| → ∞ with respect to the sequence µbk/2c−k, uniformly with respec to ζ.

Figure 2 shows the accuracy of the approximation

Eµ
n(z) '

(µ

8

)n/2

Hn

(√
2(z − µ/2)√

µ

)
(27)

for n = 10, real z and several values of µ.

x

1086

x

1080

-1e+07

1e+07

2e+07

3e+07

12 146

(a) µ = 10 (b) µ = 20

x

20 25

x

30252015100

-2e+08

2e+08

4e+08

6e+08

8e+08

1e+09

-4e+08

(c) µ = 30 (d) µ = 40

Figure 2. Solid lines represent Eµ
10(x) for several values of µ, whereas dashed lines represent

the right hand side of (27).
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4.1. Approximating the zeros

Let en,m and hn,m be the m−th zero of Eµ
n(z) and Hn(z), respectively, m =

1, 2, . . . , n. Then, for given µ and n we take the relation for ζ given in (26) to compute
a first approximation of en,m by writing

en,m ∼ µ

2
+

√
µ

2
hn,m.

The accuracy is as in the case of the generalized Bernoulli polynomials.

5. Generalized Bessel polynomials

¿From (3) we obtain the following Cauchy-type integral for the generalized Bessel
polynomials

Y µ
n (z) =

n!
2πi

∫

C

1√
1− 2zw

(
2

1 +
√

1− 2zw

)µ

e2w/(1+
√

1−2zw ) dw

wn+1
,

where C is a circle around the origin with radius less than |1/(2z)|.
We have

Y µ
0 (z) = 1, Y µ

1 (z) =
1
2
[2 + (µ + 2)z], Y µ

2 (z) =
1
4
[4 + 4(µ + 3)z + {µ(µ + 7) + 12}z2].

Hence, by (12) and pn(z) = Y µ
n (z)/n!,

A(z) =
1
2
[2 + (µ + 2)z], B(z) = −z

8
[4 + (3µ + 8)z].

It follows from (10) that

Y µ
n (z) = n![B(z)]n/2

n∑

k=0

ck(z, µ)
[B(z)]k/2

Hn−k(ζ)
(n− k)!

, ζ =
A(z)

2
√

B(z)
(28)

where the coefficients ck(z, µ) of the expansion satisfy the properties given in the fol-
lowing lemma. We introduce the notation

y(w) =
√

1− 2zw = 1−
∞∑

k=1

zkbkwk, bk =
2k

2k!

(
1
2

)

k−1

.

Lemma 5.1. The coefficients ck(z, µ) in the expansion (28) are given by the recursion
relation

16(k + 1)ck+1 = 48kzck − 28(k − 1)z2ck−1 + 4 [6 + (18− k + 5µ) z] z2ck−2−

[32 + (64 + 3(k − 3) + 25µ) z] z3ck−3 + 2
k−4∑

j=0

[(4jbk+1−j−

8jbk−j − µbk−1−j)zk+1−j − 2 (4 + 3µ + 8z) zk−jbk−2−j

]
cj ,

(29)
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where cj = 0 if j < 0 and empty sums are zero with c0(z, µ) = 1, c1(z, µ) = c2(z, µ) = 0,

and they satisfy the asymptotic estimate

ck(z, µ) = O(µbk/3c), |µ| → ∞. (30)

Proof. The function

f(z, w) =
e−Aw+Bw2+2w/(1+

√
1−2zw)

√
1− 2zw

(
2

1 +
√

1− 2zw

)µ

satisfies the differential equation

y2(1 + y)2f ′ =
[
(2Bw −A)y2(1 + y)2 + 2y2(1 + y) + 2zwy + z(1 + y)2 + µzy(1 + y)

]
f.

Then, writing f(z, w) =
∑∞

k=0 ckwk we obtain the recursion (29) upon substitution.
The function f(z, w) can be written in the form

f(z, w) = eµφ1(z,w)+φ2(z,w),

where φ1, φ2 do not depend on µ, with

φ1(z, w) = ln
2

1 +
√

1− 2zw
− 1

2
zw − 3

8
z2w2 = w3

[
5
12

z3 +O(w)
]

, w → 0

and

φ2(z, w) = w3

[
1
6
(8z + 3)z2 +O(w)

]
, w → 0.

Hence, (30) follows from Lemma 2.1.

The first few terms are c0(z, µ) = 1, c1(z, µ) = c2(z, µ) = 0, and

c3(z, µ) =
z2

12
[(5µ + 16)z + 6],

c4(z, µ) =
z3

64
[(35µ + 128)z + 40],

c5(z, µ) =
z4

80
[(63µ + 256)z + 70].

Proposition 5.1. The generalized Bessel polynomials Y µ
n (z) have the finite expan-

sion in terms of Hermite polynomials

Y µ
n (z) = [B(z)]n/2Hn(ζ) + n!

n∑

k=3

ck(z, µ)
[B(z)]k/2

Hn−k(ζ)
(n− k)!

, (31)

where ζ is given in (28). This is actually an asymptotic expansion of Y µ
n (z) for |µ| → ∞

and holds for fixed values of z and n.
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Proof. (31) follows trivially from (28) and using c0 = 1, c1 = c2 = 0. The asymptotic
property follows from (30) and by using Hn(z) = O(zn).

5.1. Approximating the zeros

Let yn,m and hn,m be the m−th zero of Y µ
n (z) and Hn(z), respectively, m =

1, 2, . . . , n. Then, for given µ and n we can compute a first approximation of yn,m.
We obtain, inverting the relation for ζ given in (28),

pz2 + qz + 1 = 0, p =
1
4

[
µ2 + 4µ + 4 + 2ζ2(3µ + 8)

]
, q = µ + 2 + 2ζ2.

This gives the relation

z(ζ) =
−q + iζ

√
2(µ + 4− 2ζ2)
2p

.

Using this with ζ = hn,m we obtain a first approximation of z = yn,m.

The zeros of Y µ
n (z) are complex, in contrast with those of the classical orthogonal

polynomials, where the zeros are real and inside the domain of orthogonality. Informa-
tion on the zeros distribution of Y µ

n (z) for large values of µ seems not to be available
in the literature. In Figure 3 we show the curves z(ζ) for ζ ∈ [−√2n + 1 ,

√
2n + 1 ], in

which interval the zeros hn,m of the Hermite polynomial Hn(ζ) occur [13].

0.005

−0.005

0.005
−0.025

Figure 3. The curves in the z−plane under the mapping ζ → z(ζ) are the images of the

intervals [−√2n + 1 ,
√

2n + 1 ] where the zeros of the Hermite polynomial Hn(ζ) occur. We

take n = 10 and show the curves (from left to right) for µ = 100, 200, . . . , 500.
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6. Buchholz polynomials

¿From (4) we obtain the following Cauchy-type integral for the Buchholz polynomials

Pµ
n (z) =

1
2πi

∫

C
ez(cot w−1/w)/2

(
sinw

w

)µ
dw

wn+1
,

where C is a circle around the origin with radius less than π.
We have

Pµ
0 (z) = 1, Pµ

1 (z) = −z

6
, Pµ

2 (z) = − 1
72

(
12µ− z2

)
.

Hence, by (12) and pn(z) = Pµ
n (z),

A(z) = −z

6
, B(z) =

µ

6
.

It follows that

Pµ
n (z) =

(µ

6

)n/2 n∑

k=0

ck(z, µ)
(n− k)!

(
6
µ

)k/2

Hn−k

( −z

2
√

6µ

)
, (32)

where the coefficients ck(z, µ) of the expansion satisfy the properties given in the fol-
lowing lemma.

Lemma 6.1. The first six coefficients cn(z, µ) in the expansion (32) are

c0(z, µ) = 1, c1(z, µ) = c2(z, µ) = 0, c3(z, µ) = − z

90
,

c4(z, µ) = − µ

180
, c5(z, µ) = − z

945
, c6(z, µ) =

7z2 − 40µ

113400
, (33)

and the remaining ones satisfy, for k ≥ 1,

ck(z, µ) = O(µbk/4c + zbk/3c), |µ|+ |z| → ∞. (34)

Proof. Using equation (7), the function f(z, w) of the Buchholz polynomials can be
written in the form

f(z, w) = eµφ1(z,w)+φ2(z,w),

where φ1, φ2 do not depend on µ, with

φ1(z, w) = ln
sin w

w
+ B(z)w2 = w4

[
− 1

180
+O (

w2
)]

, w → 0

and

φ2(z, w) = z(cotw − 1/w)/2−A(z)w = zw3

[
− 1

90
+O (

w2
)]

, w → 0.

Hence, (34) follows from Lemma 2.1.
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Figure 4. Solid lines represent Pµ
10(x) for several values of µ, whereas dashed lines represent

the right hand side of (37) with z = x.
Figure 4 shows the accuracy of the approximation

Pµ
n (z) ' 1

n!

(µ

6

)n/2

Hn

( −z

2
√

6µ

)
(35)

for n = 10, z = x and several values of µ.
Proposition 6.1. The Buchholz polynomials Pµ

n (z) have the finite expansion in
terms of Hermite polynomials

Pµ
n (z) =

1
n!

(µ

6

)n/2

Hn(ζ) +
(µ

6

)n/2 n∑

k=3

ck(z, µ)
(

6
µ

)k/2
Hn−k(ζ)
(n− k)!

, (36)

where
ζ = − z

2
√

6µ
, (37)
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the first six coefficients ck(z, µ) are given in (33).This is actually an asymptotic expan-
sion of Pµ

n (z) for |µ|+ |z| → ∞.

Proof. (36) follows trivially from (32) and using c0 = 1, c1 = c2 = 0. The asymptotic
property follows from Lemma 6.1 and by using Hn(z) = O(zn).

6.1. Approximating the zeros

We proceed in a similar way as in the previous cases. Let pn,m and hn,m be the
m−th zero of Pµ

n (z) and Hn(z), respectively, m = 1, 2, . . . , n. Then, for given µ and
n we take the relation for ζ given in (37) to compute a first approximation of pn,m by
writing

pn,m ∼ −2
√

6µhn,m.

The accuracy of this approximation increases for increasing µ. For example, for µ = 20
or 40 and n = 10, the relative accuracy in the zeros is ∼ 10−2. For µ = 100 or 200, the
relative accuracy oscillates between 10−2 and 10−3.

7. Conclusions

Finite approximations of the generalized Bernoulli, Euler, Bessel and Buchholz poly-
nomials in terms of Hermite polynomials have been given. These are also asymptotic
expansions of these polynomials with respect to certain sequences of the order parame-
ter µ for |µ| → ∞. For large |µ|, the n−th order polynomial become, up to a factor, the
n−th Hermite polynomial of a certain variable. ¿From these approximations in terms
of Hermite polynomials we have obtained asymptotic estimates of the zeros of these
polynomials.
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[7] J. L. López and J. Sesma, The Whittaker function Mk,µ as a function of k, Const.

Approx., 15 (1999) 83-95.
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