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Abstract

We present a method for deriving asymptotic expansions of integrals of the form
∫ ∞

0 f (t)h(xt) dt for small x based on ana-
lytic continuation. The expansion is given in terms of two asymptotic sequences, the coefficients of both sequences being Mellin
transforms of h and f . Many known and unknown asymptotic expansions of important integral transforms are derived trivially
from the approach presented here. This paper reconsiders earlier work of McClure and Wong [Explicit error terms for asymptotic
expansions of Stieltjes transforms, J. Inst. Math. Appl. 22 (1978) 129–145; Exact remainders for asymptotic expansions of frac-
tional integrals, J. Inst. Math. Appl. 24 (1979) 139–147] and [Asymptotic approximations of integrals, Academic Press, New York,
1989. Chaps. 5 and 6], where elements of distribution theory are used, and Wong [Explicit error terms for asymptotic expansions
of Mellin convolutions, J. Math. Anal. Appl. 72(2) (1979) 740–756], where, as in the present paper, the asymptotic expansions
are obtained without the use of distributions. In this paper we re-derive the expansions given in Wong [Explicit error terms for
asymptotic expansions of Mellin convolutions, J. Math. Anal. Appl. 72(2) (1979) 740–756] by using a different approach and
we obtain new results which are not present in Wong [Explicit error terms for asymptotic expansions of Mellin convolutions,
J. Math. Anal. Appl. 72(2) (1979) 740–756]: a proof of the asymptotic character of the expansions and accurate error bounds.
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1. Introduction

We consider integrals of the form:

I (x) ≡
∫ ∞

0
f (t)h(xt) dt . (1)

We are interested in finding asymptotic expansions of I (x) for large or small x under mild conditions on f and h. The
ideas developed in this paper may be generalized to complex x but for the sake of clearness, we restrict ourselves to
positive values of x. Without lost of generality we can think of x as a small parameter. (If x is large, perform the change
of variable t → t/x and replace the roles of f and h in (1).) Many integral transforms can be put in form (1): Laplace,
Fourier, Stieltjes, Hankel, Poisson, Glasser, Lambert,…[7].

E-mail address: jl.lopez@unavarra.es.

0377-0427/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2006.01.019



J.L. López / Journal of Computational and Applied Mathematics 200 (2007) 628 – 636 629

A formal asymptotic expansion of (1) may be obtained by replacing an expansion of h(xt) in increasing powers
of xt in (1) and interchanging summation and integration (when h(t) = e−t this is Watson’s Lemma). But this easy
procedure does not work if the positive moments of f (t) do not exist. (Important examples of failure are elliptic
integrals, Epstein–Hubbel integrals or the Appell’s function F1 among others.)

McClure and Wong (in the following M&W) solved this problem for certain kernels h using elements of the theory
of distributions and requiring an asymptotic expansion of f in decreasing powers of t [2,3,6].

In [1] we proposed a technique different from that of M&W inspired by the ideas introduced in [5]: we used analytic
continuation instead of distributions. In this paper we generalize the method introduced in [1]: we only require for
h to have an asymptotic expansion at t = 0 instead of the more stringent condition h ∈ C(∞)[0, ∞) required in [1].
Moreover, we offer here much easier proofs than those given in [1] and more accurate error bounds. This technique
results in a quite simple and very general method of asymptotic expansions of integrals I (x). (Essentially, this technique
only requires for h(t) to have an asymptotic expansion at t =0 and for f (t) to have an asymptotic expansion at t =∞.)

The asymptotic expansions obtained here were already obtained by Wong in [5] using also analytic continuation
techniques but the proofs in this paper are different from those of [5]. From these new proofs we can show the
asymptotic character of the expansions without requiring additional hypotheses (the proof of the asymptotic character
of the expansion in [5] requires additional hypotheses).

In the next section we present the method for obtaining asymptotic expansions of I (x) and establish the fundamental
results of the paper. In Section 3 we show the asymptotic character of the expansions and give precise error bounds for
the remainders under additional hypotheses on f and h. In Section 4 we present some conclusions and a few comments.

2. The method

We need some definitions and two technical lemmas to formulate the concepts mentioned in the introduction accu-
rately.

Definition 2.1. We denote by Ha,� the set of functions h ∈ L1
Loc(0, ∞) verifying:

(i) h has an asymptotic expansion at t = 0:

h(t) =
n−1∑
k=0

Akt
k−a + hn(t), n = 1, 2, 3, . . . , a ∈ R, (2)

where {Ak} is a sequence of complex numbers and hn(t) = O(tn−a) when t → 0+.
(ii) h(t) = O(t−�) when t → ∞ for some � ∈ R.

Definition 2.2. We denote by Fb,� the set of functions f ∈ L1
Loc(0, ∞) verifying:

(i) f has an asymptotic expansion at infinity:

f (t) =
n−1∑
k=0

Bk

tk+b
+ fn(t), n = 1, 2, 3, . . . , b ∈ R, (3)

where {Bk} is a sequence of complex numbers and fn(t) = O(t−n−b) when t → ∞.
(ii) f (t) = O(t−�) when t → 0+ for some � ∈ R.

In the remaining of the paper we require for the parameters a, b, � and � to satisfy the following conditions:
Condition I: a + � < 1 < b + �.
Condition II: � < b and a < �.
Condition I assures the integrability of h(xt)f (t) in (1). Condition II does not suppose any lost of generality because

of (a) and (b) below.
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(a) If ��b (then � > a + � − b�a from condition I) we write:

I (x) =
∫ ∞

0
f̃ (t)h(xt) dt + x−s

∫ ∞

0
f̃ (t)h̃(xt) dt = I1(x) + x−sI2(x),

with

f̃ (t) ≡ t sf (t), h̃(t) ≡ h(t)

1 + t s

and s being any natural number verifying s�� ≡ (� + � − a − b)/2 (observe that � > 0). Then h ∈ Ha,�, f̃ ∈ F
b̃,�

and h̃ ∈ H
ã,�̃ with b̃ ≡ b + s, �̃ ≡ � − s and ã ≡ a − s. In I1(x) we have a + � < 1 < b̃ + �, a < � and � < b̃. In

I2(x) we have ã + � < 1 < b̃ + �̃, ã < �̃ and � < b̃.
(b) If a�� (then b > � + a − ��� from condition I) we write:

I (x) =
∫ ∞

0
f (t)h̃(xt) dt + x−s

∫ ∞

0
f̃ (t)h̃(xt) dt = I1(x) + x−sI2(x),

with

f̃ (t) ≡ t−sf (t), h̃(t) ≡ h(t)

1 + t−s

and s any integer verifying s�� (observe that now � < 0). Then h̃ ∈ H
a,�̃, f ∈ Fb,� and f̃ ∈ F

b̃,�̃ with �̃ ≡ � − s,

b̃ ≡ b + s and �̃ ≡ � + s. In I1(x) we have a + � < 1 < b + �̃, a < �̃ and � < b. In I2(x) we have a + �̃ < 1 < b̃ + �̃,
a < �̃ and �̃ < b̃.

Definition 2.3. Let g ∈ L1
Loc(0, ∞). We denote by M[g; z] the Mellin transform of g,

∫ ∞
0 tz−1g(t) dt (when this

integral exists), or its analytic continuation as a function of z.

The proofs of the following two lemmas are based on the results of [6, Chapter 3].

Lemma 2.4. The Mellin transform M[f ; z] of every function f ∈ Fb,� exists and defines a meromorphic function of
z in the half plane Rz > �. More precisely,

(i) In the strip � <Rz < b,

M[f ; z] =
∫ ∞

0
tz−1f (t) dt . (4)

(ii) For n ∈ N, in the strip � <Rz < n + b,

M[f ; z] =
∫ 1

0
tz−1f (t) dt −

n−1∑
k=0

Bk

z − k − b
+

∫ ∞

1
tz−1fn(t) dt . (5)

M[f ; z] has simple poles at the points z = k + b, k = 0, 1, 2, . . . with residues −Bk .
(iii) For n ∈ N, in the strip n + b − 1 <Rz < n + b,

M[f ; z] =
∫ ∞

0
tz−1fn(t) dt .

Proof. Thesis (i) follows immediately from the definition of Fb,� and � < b. The analyticity of the integral in the right
hand side of (4) in the strip � <Rz < b follows from [4, pp. 240–241], (we will use repeatedly without mention this
well-known result).
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Then, in the strip � <Rz < b:

M[f ; z] =
∫ ∞

0
tz−1f (t) dt =

∫ 1

0
tz−1f (t) dt +

∫ ∞

1
tz−1f (t) dt .

Introducing expansion (3) in the last integral above we obtain equality (5) in the strip � <Rz < b. The first integral in
the right hand side of (5) defines an analytic function of z forRz > �, whereas the last integral in (5) defines an analytic
function of z forRz < n + b. Therefore, the right hand side of (5) defines the analytic continuation of

∫ ∞
0 tz−1f (t) dt

to the strip � <Rz < n + b. From here, thesis (ii) is evident. Thesis (iii) follows from (ii). Multiplying (3) by tz−1 and
integrating we have:

∫ 1

0
tz−1f (t) dt =

n−1∑
k=0

Bk

z − k − b
+

∫ 1

0
tz−1fn(t) dt, Rz > n + b − 1. (6)

Thesis (iii) follows from (5) by using (6). �

Lemma 2.5. The Mellin transform M[h; z] of every function h ∈ Ha,� exists and defines a meromorphic function of
z in the half plane Rz < �. More precisely,

(i) In the strip a <Rz < �,

M[h; z] =
∫ ∞

0
tz−1h(t) dt .

(ii) For m ∈ N, in the strip a − m <Rz < �,

M[h; z] =
∫ 1

0
tz−1hm(t) dt +

m−1∑
k=0

Ak

z + k − a
+

∫ ∞

1
tz−1h(t) dt . (7)

M[h; z] has simple poles at the points z = a − k, k = 0, 1, 2, . . . with residues Ak .
(iii) For m ∈ N, in the strip a − m <Rz < a + 1 − m,

M[h; z] =
∫ ∞

0
tz−1hm(t) dt .

Proof. Define h̃(t) ≡ h(t−1). Observe that M[h; z]=M[h̃; −z] and that h̃ ∈ F−a,−�. Apply Lemma 2.4 to M[h̃; −z]
with b replaced by −a and � replaced by −�. �

Now we can formulate the main results of the paper.

Theorem 2.6. Let f ∈ Fb,� and h ∈ Ha,� with a + b /∈ Z. Let conditions I and II hold. Then, for any n = 1, 2, 3, . . .

and m = n + �a + b�,

∫ ∞

0
h(xt)f (t) dt =

n−1∑
k=0

BkM[h; 1 − k − b]xk+b−1 +
m−1∑
k=0

AkM[f ; k + 1 − a]xk−a +
∫ ∞

0
fn(t)hm(xt) dt .

(8)

Proof. Denote f0(t) ≡ f (t) and

Fk(z) ≡
∫ ∞

0
tzfk(t)h(t) dt . (9)
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Fig. 1. The strips of analyticity Rz ∈ (k + a + b − 2, k + b + � − 1) of Fk(z), k > 0, are shown in (a). The strip of analyticity of F0(z) is
Rz ∈ (� + a − 1, b + � − 1). Their width is � − a + 1 for k > 0 and b + � − a − � for k = 0. Then, for k�0, Fk+1(z) and Fk(z) are both analytic
in the strip Rz ∈ (k + a + b − 1, k + b + � − 1) of width � − a. In that strip, Fk+1(z) = Fk(z) − BkM[h; z + 1 − k − b]. On the other hand,
M[h; z + 1 − k − b] is a meromorphic function of z in the half plane Rz < k + b + � − 1. Letting k run from k = n − 1 up to k = 0, an analytic
continuation process of Fn(z) is obtained from the strip (n + a + b − 2, n + b + � − 1) to the strip (� + a − 1, b + � − 1). The strips of analyticity
Rz ∈ (n+ b + a − k − 2, n+ b + a − k) of Hk(z), k > 0, are shown in (b). The strip of analyticity of H0(z) isRz ∈ (n+ b + a − 2, n+ b +�− 1).
As in (a), letting k run from k = 0 up to k =m− 1, an analytic continuation process of H0(z) is obtained from the strip (n+b +a − 2, n+b +�− 1)

to the strip (n + b + a − m − 2, n + b + a − m).

For k = 1, 2, 3, . . . , Fk(z) is an analytic function of z in the strip k + b + a − 2 <Rz < k + b + � − 1. F0(z) is an
analytic function of z in the strip � + a − 1 <Rz < b + � − 1. From (3) we have fk+1(t) = fk(t) − Bkt

−k−b. Using
this in (9) and (i) of Lemma 2.5 we have, for any k = 0, 1, 2, . . . , that the equality

Fk+1(z) = Fk(z) − BkM[h; z + 1 − k − b] (10)

holds in the strip k + b + a − 1 <Rz < k + b + � − 1. Fk+1(z) is an analytic function of z in the strip k + b + a −
1 <Rz < k + b + � and, from Lemma 2.5, M[h; z + 1 − k − b] is a meromorphic function of z in the half plane
Rz < k + b + � − 1. Hence analytic continuation of Fk+1(z) is obtained from strip k + b + a − 1 <Rz < k + b + �
to strip k + b + a − 2 <Rz < k + b + � − 1 if k > 0. If k = 0, analytic continuation of F1(z) is obtained from strip
b + a − 1 <Rz < b + � to strip � + a − 1 <Rz < b + � − 1. Repeating this process from k = n − 1 up to k = 0 we
obtain that

F0(z) −
n−1∑
k=0

BkM[h; z + 1 − k − b] (11)

defines the analytic continuation of Fn(z) from the strip n + b + a − 2 <Rz < n + b + � − 1 to the strip � + a −
1 <Rz < b + � − 1 (see Fig. 1(a)).

On the other hand, denote h0(t) ≡ h(t) and

Hk(z) ≡
∫ ∞

0
tzfn(t)hk(t) dt . (12)

For k = 1, 2, 3, . . . , Hk(z) is an analytic function of z in the strip n + b + a − k − 2 <Rz < n + b + a − k. H0(z) is an
analytic function of z in the strip n + b + a − 2 <Rz < n + b + � − 1. From (2) we have hk(t) = hk+1(t) + Akt

k−a .
Using this in (12) and (i) of Lemma 2.4 with f replaced by fn ∈ Hn+b,n+b−1 we have, for any k = 0, 1, 2, . . . ,
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that the equality

Hk(z) = Hk+1(z) + AkM[fn; z + 1 + k − a] (13)

holds in the strip n + b + a − k − 2 <Rz < n + b + a − k − 1. Hk+1(z) is an analytic function of z in the strip
n+b +a − k − 3 <Rz < n+b +a − k − 1 and, from (iii) of Lemma 2.4, M[fn; z+ 1 + k −a]=M[f ; z+ 1 + k −a]
in the strip n + b + a − k − 2 <Rz < n + b + a − k − 1. Moreover, from Lemma 2.4, M[f ; z + 1 + k − a] is a
meromorphic function of z forRz > a+�−k−1. Hence, for k=1, 2, 3, . . . , analytic continuation of Hk(z) is obtained
from strip n + b + a − k − 2 <Rz < n + b + a − k to strip Max{n + b − 2, �} + a − k − 1 <Rz < n + b + a − k − 1.
For k = 0, analytic continuation of H0(z) is obtained from strip n + b + a − 2 <Rz < n + b + � − 1 to strip
Max{n + b − 2, �} + a − 1 <Rz < n + b + a − 1. Repeating this process from k = 0 up to k = m − 1 we obtain that

Hm(z) +
m−1∑
k=0

AkM[f ; z + k + 1 − a] (14)

defines the analytic continuation of H0(z) from the strip n + b + a − 2 <Rz < n + b + � − 1 to the strip Max{n + b −
2, �} + a − m <Rz < n + b + a − m (see Fig. 1(b)).

Observe that Fn(z) = H0(z) in the strip n + b + a − 2 <Rz < n + b + � − 1. Then, both functions, (11) and (14)
represent the analytic continuation of Fn(z) = H0(z) from the strip n + a + b − 2 <Rz < n + b + � − 1 to the strip
Max{�, n + b − m − 1} + a − 1 <Rz < b + Min{� − 1, n + a − m}. The analytic continuation is unique and then,
functions (11) and (14) coincide in the strip Max{�, n + b − m − 1} + a − 1 <Rz < b + Min{� − 1, n + a − m}:

∫ ∞

0
tzf (t)h(t) dt =

n−1∑
k=0

BkM[h; z + 1 − k − b] +
m−1∑
k=0

AkM[f ; z + k + 1 − a] +
∫ ∞

0
tzfn(t)hm(t) dt . (15)

The point z = 0 belongs to the strip of validity of the above formula. The desired result is this identity at z = 0 with
h(t) replaced by h(xt). �

Theorem 2.7. Let f ∈ Fb,� and h ∈ Ha,� with a + b ∈ N. Let conditions I and II hold. Then, for any n= 1, 2, 3, . . .

and m = n + a + b − 1,

∫ ∞

0
h(xt)f (t) dt =

a+b−2∑
k=0

AkM[f ; k + 1 − a]xk−a +
n−1∑
k=0

xk+b−1

×
{
−BkAk+a+b−1 log x + lim

z→0
[BkM[h; z + 1 − k − b] + Ak+a+b−1M[f ; z + k + b]]

}

+
∫ ∞

0
fn(t)hm(xt) dt . (16)

Proof. The proof is similar to the proof of the above theorem. In that proof we have not used a + b /∈ Z to derive
formula (15). In fact, that formula still holds for a +b ∈ Z. But then both, M[h; z+1−k −b] and M[f ; z+k +1−a]
have a simple pole at z = 0 and we cannot simply take z = 0 in that formula. But we can take the limit z → 0: from
(ii) of Lemma 2.5 we have that, for k = 0, 1, 2, . . . , M[h; z + 1 − k − b] has a simple pole at z = 0 with residue
Aa+b+k−1. From (ii) of Lemma 2.4 we have that, for k = a + b − 1, a + b − 2, a + b − 3, . . . , M[f ; z + k + 1 − a]
has simple poles at z = 0 with residue −Bk+1−a−b. Therefore, the first a + b − 1 terms of the second sum in the right
hand side of (15) have a finite limit at z = 0. The poles of the remaining n terms of that sum (from k = a + b − 1 up to
k = m = n + a + b − 1) cancel one by one with the poles of the n terms of the first sum in the right hand side of (15)
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and then, the limit z → 0 exist. Therefore, taking the limit z → 0 we obtain∫ ∞

0
h(t)f (t) dt =

a+b−2∑
k=0

AkM[f ; k + 1 − a] + limz→0

n−1∑
k=0

{BkM[h; z + 1 − k − b]

+ Ak+a+b−1M[f ; z + k + b]} +
∫ ∞

0
fn(t)hm(t) dt . (17)

Now, replace h(t) by h(xt) in the above equation and use

lim
z→0

{xk+b−1[Bkx
−zM[h; 1 + z − k − b] + Ak+a+b−1M[f ; z + k + b]]}

= xk+b−1
{

lim
z→0

[BkM[h; 1 + z − k − b] + Ak+a+b−1M[f ; z + k + b]] − Ak+a+b−1Bk log x

}
. (18)

To derive this equality we have used x−z = 1 − z log x + O(z2) and

M[h; z + 1 − b − k] = Ak+a+b−1

z
+ O(1),

when z → 0. This last identity follows from (ii) of Lemma 2.5. �

Theorem 2.8. Let f ∈ Fb,� and h ∈ Ha,� and 1−a−b ∈ N. Let conditions I and II hold. Then, for any m=1, 2, 3, . . .

and n = m + 1 − a − b,∫ ∞

0
h(xt)f (t) dt =

−a−b∑
k=0

BkM[h; 1 − k − b]xk+b−1 +
m−1∑
k=0

xk−a

×
{
−AkBk+1−a−b log x + lim

z→0
[Bk+1−a−bM[h; z + a − k] + AkM[f ; z + k + 1 − a]]

}

+
∫ ∞

0
fn(t)hm(xt) dt . (19)

Proof. It is similar to the proof of the above theorem using

lim
z→0

{xk−a[Bk+1−a−bx
−zM[h; z + a − k] + AkM[f ; z + k + 1 − a]]}

= xk−a

{
lim
z→0

[Bk+1−a−bM[h; z + a − k] + AkM[f ; z + k + 1 − a]] − AkBk+1−a−b log x

}

instead of (18). �

3. Asymptotic properties and error bounds

Theorem 3.1. Within the hypotheses of Theorems 2.6–2.8, expansions (8), (16) and (19) are asymptotic expansions
for small x:∫ ∞

0
fn(t)hm(xt) dt = O(xn+b−1) when x → 0 and a + b /∈ Z, (20)

that is, when m = n + �a + b�, and∫ ∞

0
fn(t)hm(xt) dt = O(xm−a log x) when x → 0 and a + b ∈ Z, (21)

that is, when m = n + a + b − 1.
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Proof. On the one hand, from (i) of Definition 2.2, there is a c1
n > 0 and a t1

0 such that |fn(t)|�c1
nt

−n−b for

t � t1
0 . From (i) of Definition 2.1, there is a c2

m > 0 and a t2
0 such that |hm(xt)|�c2

m(xt)m−a for xt � t2
0 . For small enough

x we have that t1
0 < t2

0 /x and we can take a t0 ∈ [t1
0 , t2

0 /x]. Then,∫ ∞

0
fn(t)hm(xt) dt =

∫ t0

0
fn(t)hm(xt) dt +

∫ ∞

t0

fn(t)hm(xt) dt .

∣∣∣∣
∫ ∞

0
fn(t)hm(xt) dt

∣∣∣∣ �c2
mxm−a

∫ t0

0
|fn(t)|tm−a dt + c1

nx
n+b−1

∫ ∞

xt0

|hm(t)|t−n−b dt

�(xm−a + xn+b−1)

[
c2
m

∫ t0

0
|fn(t)|tm−a dt + c1

n

∫ ∞

0
|hm(t)|t−n−b dt

]
. (22)

The integrals between brackets in the last line of (22) are finite for 0 < n + a + b − m < 1 (when a + b /∈ Z and
m = n + �a + b�). Then, (20) follows from (22).

If n + b = m − a + 1 (when a + b ∈ Z), the second integral in the last line of (22) is divergent and inequality (22)
is true but useless. In this case, using hm(t) = hm+1(t) + Amtm−a in the second line of (22) we have:∫ ∞

xt0

|hm(t)|t−n−b dt �
∫ ∞

1
|hm(t)|t−n−b dt +

∫ 1

xt0

(|hm+1(t)| + |Amtm−a|)t−n−b dt �
∫ ∞

1
|hm(t)|t−n−b dt

+
∫ 1

0
|hm+1(t)|t−n−b dt + |Am log(xt0)|. (23)

The last line above is finite for 0 < n+ a + b −m < 2 (in particular when m=n+ a + b − 1). Using (23) in the second
line of (22), (21) follows. �

Remark 3.2. In [6, Chapter 6], the additional hypothesis Supt∈(0,∞){|tn+�fn(t)|} < ∞ is required to show the asymp-
totic character of the expansions. We see in Theorem 3.1 above that this extra hypothesis is not necessary.

Theorem 3.1 does not offer precise bounds for the remainder. The following proposition shows that a precise bound
may be obtained if the bound |fn(t)|�c1

nt
−n−b used in the proof of Theorem 3.1 holds ∀t ∈ (0, ∞) and not only for

t ∈ [t1
0 , ∞) and the bound |hm(t)|�c2

mtm−a holds ∀t ∈ (0, ∞) and not only for t ∈ (0, t2
0 ].

Proposition 3.3. Let the remainder fn(t) in expansion (3) satisfy bound |fn(t)|�Fnt
−n−b∀t ∈ (0, ∞) and let the

remainder hm(t) in (2) satisfy bound |hm(t)|�Hmtm−a∀t ∈ (0, ∞) for some positive constants Fn and Hm. Then, the
remainder in Theorems 2.6–2.8 satisfies the bound∣∣∣∣

∫ ∞

0
fh(t)hm(xt) dt

∣∣∣∣ �
{

C1
n,mxn+b−1 if a + b /∈ Z,

[C2
n,m + FnHm| log x|]xm−a if a + b ∈ Z,

with

C1
n,m ≡ Fn

[
Hm

1 + �a + b� − a − b
+ |Am−1| + Hm−1

b + a − �a + b�
]

and

C2
n,m ≡ Fn(|Am−1| + Hm−1) + Hm(|Bn−1| + Fn−1).

Proof. Consider first the case a + b /∈ Z (m = n + �a + b�). Write∫ ∞

0
fn(t)hm(xt) dt = 1

x

∫ 1

0
fn

(
t

x

)
hm(t) dt + 1

x

∫ ∞

1
fn

(
t

x

)
hm(t) dt .

Introduce the decomposition hm(t) = hm−1(t) − Am−1t
m−a−1 into the last integral in the right hand side above. The

proposition follows after using |fn(t)|�Fnt
−n−b, |hm(t)|�Hmtm−a and m = n + �a + b�.
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Consider now the case a + b ∈ Z (m = n + a + b − 1). Write∫ ∞

0
fn(t)hm(xt) dt =

∫ 1

0
fn(t)hm(xt) dt +

∫ 1/x

1
fn(t)hm(xt) dt +

∫ ∞

1/x

fn(t)hm(xt) dt .

Perform the change of variable t → t/x in the last integral, introduce the decomposition fn(t)=fn−1(t)−Bn−1t
1−n−b

into the first integral in the right hand side and the decomposition hm(t)=hm−1(t)−Am−1t
m−a−1 into the last integral.

The proposition follows using |fn(t)|�Fnt
−n−b, |hm(t)|�Hmtm−a and m = n + a + b − 1. �

4. Conclusions

When the positive moments of f (t) do not exist, asymptotic expansions of integral transforms
∫ ∞

0 f (t)h(xt) dt for
small x where first obtained by M&W using the theory of distributions [6, Chapters 5 and 6] or of analytic continuation
[5]. In this paper we have generalized the method used by M&W in [6, Chapter 6] in such a way that it may be applied
not only to the functions h given there, but to any function h ∈ Ha,� (see Definition 2.1). We have new proofs for the
expansions given in [5], using analytic continuation techniques in a different way.

The asymptotic character of the expansions in M&W’s theory [6,5] is shown when the remainder in the expansion
of the function f (t) satisfies the additional hypothesis |fn(t)|�cnt

−n−b∀t ∈ (0, ∞). In Theorem 3.1 above we have
shown that this extra hypothesis is not necessary, although it is quite convenient to have practical error bounds (see
Proposition 3.2).

The method presented in this paper unifies classical procedures and distributional ones in a unique formulation
(Theorems 2.6–2.8). Classical methods require (among other hypotheses) for h(t) to have an expansion at t = 0. The
distributional M&W’s technique requires (among other hypotheses) for f (t) to have an expansion at t = ∞. The
technique presented here requires both, an expansion of h(t) at t = 0 and an expansion of f (t) at t = ∞ (and no more
essential hypotheses). It is an exercise to check, for example, that the asymptotic expansions given in [6, Chapter 6] for
Stieltjes transforms for large argument, Laplace transforms for small argument, Watsons lemma (Laplace transforms for
large argument), fractional integrals for large arguments or Fourier transforms for small argument are trivial corollaries of
Theorems 2.6–2.8 given above. Asymptotic expansions of Stieltjes transforms for small argument, Lambert transforms
for small or large argument and Poisson transform for small or large argument may be easily derived from Theorems
2.6–2.8. Also, many asymptotic expansions of important special functions such as Elliptic integrals, Appell functions,
Lauricela functions or Epstein–Hubbel integrals, previously obtained by using the distributional method, may be re-
derived easily from those theorems. Moreover, accurate error bounds for these expansions follow from Proposition 3.2.

M&W’s theory deals also with the possibility of f (t) having an oscillatory asymptotic expansion at infinity of the
form f (t) = eict

∑n−1
k=0 Bkt

−k−b + fn(t) instead of (3). Asymptotic expansions of Stieltjes transforms of these kind
of functions are derived in [6, Chapter 6, Section 3]. Theorems 2.6–2.8, may be perhaps generalized to this kind of
functions. Moreover, they may be generalized to complex values of the parameters and x. This is subject of further
investigations.
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