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Abstract

The main difficulty in Laplace’s method of asymptotic expansions of double integrals is originated by a change of variables.
We consider a double integral representation of the second Appell function F(a, b, b’, ¢, ¢’; x, y) and illustrate, over this exam-
ple, a variant of Laplace’s method which avoids that change of variables and simplifies the computations. Essentially, the method
only requires a Taylor expansion of the integrand at the critical point of the phase function. We obtain in this way an asymptotic
expansion of F»(a,b,b’,c,c’; x,y) for large b, b’, ¢ and ¢’. We also consider a double integral representation of the fourth Appell
function Fy(a, b, c,d; x,y). We show, in this example, that this variant of Laplace’s method is uniform when two or more critical
points coalesce or a critical point approaches the boundary of the integration domain. We obtain in this way an asymptotic approx-
imation of Fy(a, b, c,d; x, y) for large values of a, b, ¢ and d. In this second example, the method requires a Taylor expansion of
the integrand at two points simultaneously. For this purpose, we also investigate in this paper Taylor expansions of two-variable
analytic functions with respect to two points, giving Cauchy-type formulas for the coefficients of the expansion and details about
the regions of convergence.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We consider double integrals of the form

F(z) = // e £ (x, yydx dy, (D
D

where D is a bounded or unbounded domain in R?, f and & are infinitely differentiable in D and z is a large positive
parameter. Laplace’s method tells us that the main contribution to the asymptotic behaviour of (1) comes from the
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points of the domain D where the phase function £ (x, y) attains its largest value [9, Chapter 8]. For instance, if 2 (x, y)
attains its maximum value only at a point (xgp, yo) € D°, where f(x,y) and h(x, y) are infinitely differentiable, then
Vh(xo, yo) = (0, 0) and the Hessian matrix of / at that point, Hh(xq, yo), is negative definite. Laplace’s result is

7 f (x0, ¥0) o2h(x0.30)
z/IDetlHh(xo, yo)]l

The right-hand side above is the first term of a complete asymptotic expansion that can be obtained in the following
way [9, Chapter 8, Section 10]. The Hessian matrix Hh(xo, yo) can be diagonalized after an orthogonal change of
variables. Then, without loss of generality, we may assume that the Taylor expansion of h(x, y) at (xg, yo) has the
form

F(z) ~

7 —> 00. 2)

h(x,y) = h(xo, yo) +a(x — x0)> +b(y — y0)> + - --
= h(x0, yo) +a(x — x0)*[1 + P(x, »)] + b(y — yo)*[1 + Q(x, )], 3)

where a,b < 0, P(x,y) and Q(x,y) are infinitely differentiable at (xo, yp) and P (xo, yo) = Q(x0,y0) = 0.
Perform in (1) the change of integration variables (x,y) — (u,v) defined by u = (x — xp)/1+ P(x,y),
v=(y—yo)v1+ 0(x,y),

F(z) = e 0:0) / f T oy vy dudv, )
D/

where D’ is the image of D under this change of variables,
d(x,y)
a(u,v)

and d(x, y)/d(u, v) is the Jacobian of the transformation (x, y) — (u, v). If g(u, v) has a Taylor expansion at (u, v) =
0,0,

[e ) n
gu.v)~ Y "> ™", (6)

n=0m=0

g, v) = f(x(,v), yu,v))

®)

then we can apply Watson’s Lemma to the integral (4): replace (6) in the right-hand side of (4) and interchange sum
and integral [9, Chapter 8, Section 10],

o n
F(z) ~ e¥n(x0:30) Z Z Com 2n—2m (F_(an://zz():i’;n—mrij/_ziﬁ)l , Z—> 00. @)

n=0m=0
Therefore, the computation of the coefficients ¢, , in the standard Laplace method is very difficult because of the
complexity of the above mentioned change of variable (see the example in [9, Chapter 8, Section 10] where the first
term of the expansion of a double integral is derived). In general, only a few terms of the expansion are obtained
explicitly.

In [2], a modification of Laplace’s method for one-dimensional integrals is proposed which avoids the change of
variable and simplifies the computation of the coefficients of the expansion. Consider the integral

b
F(x)= / O (1) dr, ®)

where (a, b) is a real interval (finite or infinite), x is a large positive parameter and f(¢) and h(¢) are infinitely
differentiable in (a, b). It is shown in [2] that it is not necessary to use a change of variables in (8) to convert the
integral into the Laplace form and then apply the standard Laplace method. It is just necessary to expand f () in (8)
at the maximum of 4 (#) in [a, b], say ty, and interchange sum and integral. If f () has a Taylor expansion at t = 1y,

fO~Y " fult —10)", ©)

n=0
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then replace this expansion in (8) and interchange sum and integral. We obtain the asymptotic expansion (see [2] for
details)

F(x) ~ an f MO — 1) dt, x — oo. (10
n=0

—0o0

In [5], it has been shown how this modification of Laplace’s method for one-dimensional integrals can be successfully
employed to obtain uniform asymptotic expansions of certain orthogonal polynomials.

In this paper we investigate that modification of Laplace’s method for double integrals by means of two examples:
the second and fourth Appell functions. In Section 2, we show that the second Appell function F»(a, b,b’, ¢, c’; u, v)
can be written in the form (1), where the phase function A(x, y) has only one absolute (and relative) maximum
(x0, yo) € D. This point (xg, yp) can move when the asymptotic parameters b, b, ¢ or ¢’ change their relative size, but
it always remains in D. Then, as will be made clear below, we just need to consider the one-point Taylor expansion
of the function f(x, y) at that point (xg, yo).

We show in Section 3 that the fourth Appell function Fu(a, b, c,d; u, v) can also be written in the form (1) and
again, the phase function 4 (x, y) has only one relative maximum (xg, yp). But in this case, xo and yp depend of u
and v and then, the critical point (xg, yg) may cross the domain D and leave it for certain values of u# and v. Then, as
will be made clear below, we need a Taylor expansion of the function f(x, y) at two points simultaneously. For this
purpose, in Appendix A we briefly investigate the two-point Taylor expansion of an analytic function of two variables.
This problem was already solved for one-variable analytic functions in [8], and more recently considered in [3,4].

A few remarks and comments are given in Section 4.

2. The Appell function F»(a, b, b’, c,c’; x, y) for large b, b, c, ¢’

The second Appell hypergeometric function is a generalization of the Gauss hypergeometric function , F and it is
defined by the double series

o0 o
D) (V'
Fya,bb.c.cix.y)=Y Y Donin OO gy )y 1y <1,

/ 17!
== ©)m(cym!n!

A double integral representation of the second Appell function is given in [6]:

INGINCS)

Fr(a,b,b,c,c';x,y)= TGN — b GIIE —B) L(a,b,b,c,c;x,y), (11)
with
1 1
La,b,b,c, c’;x,y)zfds/dzsb—l(l — )T = S s — )T (12)
0 0
x,yeC,x+y¢[l,00),c>b>0andc >b > 0. We define the following constants «, 8 and y:
b —1 c—b—1 d—-b -1
s s S

Using these relations, (12) can be written in the form (1)

1
L(a,b,b,c, c/;x,y)zfds dte®=DhED £ 1), (13)
0

o _

with
h(s,t) =logs + Blog(l —s) + alogt + y log(l — 1),
f(s,t)=(1—xs—yr)™°.
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The phase function A (s, t) possesses a relative maximum at

1 o
w=(rtzts)

The point (s, fo) belongs to the domain of integration (0, 1) x (0,1) if @ > 0, 8 > 0 and y > 0. We will assume
throughout this section that b, ', ¢ and ¢’ are large with «, 8 and y fixed and positive. Now, instead of using the
standard Laplace method to approximate (13) for large b, we just replace the function f (s, ¢) by its Taylor expansion
at the point (so, 7),

N—-1 n

F0="" amn-m(s0, 10)(s —50)" (t = 10)" ™™ +rn(s0, to, 5, 1), (14)

n=0 m=0
with 7y (s0, t0, 5, 1) = O(|(t — to, s — s0)|I"V) as (s, 1) — (s0, 7o) and
(@)px™y"m | X ay 174"
m!(in —m)! 148 a+vy '

Substitution of the above expansion into (13), followed by reversal of the order of summation and integration,
yields the expansion

N-1 n my,n—m —a—n n—m
Fz(a,b,b’,c, C/;x,y)z Z Z (a)px™y 1— X . ay B o
m!(n —m)! 1+ a4y oa+y

Am,n—m (s0, t0) =

n=0 m=0
—1 " o ety
x<m> zFl(—m,b,c,1+/3)2F1(m—n,b,c, " )
+ Ry(a,b, b c,c5x,y), (15)
with
FOr() Fof
C C
Ry(a,b,b' c,csx,y) = /d /dt (b=Dhs,0) 10,5, 1). 16
~N(a c,cix,y) T —bIG) e —b) s e ry(s0, fo, 8, 1) (16)
00

The above ,F; functions satisfy the following three-term recurrence relation with respect to the first parameter
[1, formula (15.2.10)]:

1 1—
Fiem—T1bse 1+ py = SEMAZP) b b4 py+ F
m—+c m—+c

2Fi(—=m+1,b;c; 1+ B).

When b — oo (and ¢ — oo with fixed ),

2b — 1
SO, b 1+ 8) =1=0() and 2F (=1, bic: 1+ B) = < —of-).
cb-1) b
From the above recurrence and these asymptotic behaviours, it can be shown by induction that, as b — oo (and
c,c’, b — oo with fixed «, 8, v),

m+1

2Fi(=m,b;c; 1/59) = O(b~L"2)) and 2 Fy(m —n,b'; s 1/t0)=(9(b—L”"£'“J).

Hence,
2Fi(=m,b;c;1/so)aFi(m —n,b'; 5 1/tg) = O(b_L%J), as b — oo.

On the other hand, using 7 (so, o, 5, t) = O(||(s — 50, t —t0)||V), the standard Laplace first order approximation for
the double integral in (16) and the Stirling approximation for the quotient of gamma functions in that formula, we find
that Ry (a, b, b, ¢, c’; x, y) = O(b~N/?). Then, (15) is an asymptotic expansion for large positive b, ', ¢ and ¢’ with
fixed and positive «, § and y. Table 1 shows a numerical experiment about the accuracy of the approximation (15).
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Table 1
Relative errors in the approximation (15) of Fy(a,b,b’,c,c’;x,y) for a =1, x = 1/4,
y = —1/4, different b, b’, ¢, ¢’ and truncation index N. The relative error decreases for increas-
ing asymptotic parameters and increasing N
b=b'=50 b=0b'=100 b=10b" =200 b=b"=500
c=c =100 c=c =150 c=c =250 c=c =550
N=1 0.03 0.018 0.0079 0.0018
N=3 0.000028 0.00001 1.91e-6 1.06e-7
N=5 4.32¢-8 9.23e-9 7.72e-10 1.13e-11
N=1 7.49e-11 7.21e-12 2.79e-12 1.13e-12

3. The Appell function F4(a, b, c,d; x, y) for large a, b, c and d

The fourth Appell hypergeometric function Fy(a, b, ¢, d; x, y) is defined by the double series
. (a)m+n(b)m+n m.n 1/2 1/2
Fi(a.b,c.d;x.y) = Z Z O P < 1
m=0n=0
We consider the following integral representation of F4 given in [7, p. 566]:
INEINC))

F4(a, b,c,d;u(l —v),v(l — u)) = @B —aFd—b) Iy(a,b,c,d;u,v), (17

with

1
Li(a,b,c,d;u,v) Efdx dy x1yP=1 (1 — ux)dH=e=d (1 — py)PHI—e=d( — x)c—a]
0

o _

x (1= y)4=b71(1 — ux — vy)ctd-a=b=1 (18)

c>a>0,d>b>0andu,veC withu+ v ¢[l,oc0). We consider the case that a and ¢ go to infinity at the same
speed, as well as b and d,

c=a-+A, d=b+ B,

with A and B fixed positive numbers. Thus, except for an asymptotically irrelevant factor (1 —x)4~1(1 — y)B~!, the
integral in (18) can be written in the form (1),

1 1
14(a,b,c,d;u,v):/dx/dye(“*l)h(x’”(l — 04T 1= B f(x, ), (19)
0 0

with
{h(x, y) =logx +alogy — Blog(l —ux) — ylog(l — vy),
fa ) =1 —ux —vy)A*E

and o = % B = b'“;ff L y = “+A+B L fixed positive numbers. In the remaining of this section we consider
B > 1and y > «, which written in the orlglnal variables read ¢ + d > 2a and ¢ 4+ d > 2b. Under these conditions, the

phase function A (x, y) possesses a relative maximum at the point

( ) < 1 o )
X0, = , .
OY= U= B) v —y)

This point (xg, yo) € D =(0,1) x (0, 1) if u(1 — 8) > 1 and v(« — y) > « (in the original variables these conditions
read u(2a —c —d) > b — 1 and v(2b — ¢ — d) > b — 1, respectively). The point (xp, yo) belongs to the boundary
of Dif u(l—pB)=1and v —y) >aoru(l —p)>1and v(e — y) =a. And (xq, yo) ¢ D if u(1 — ) < 1 or
v(e —y) <« (see Fig. 1).

(20)




J.L. Lopez, E. Pérez Sinusia /J. Math. Anal. Appl. 339 (2008) 530-541 535

y

(x01) (1,1)

(XoYo) T (1.w)

X

Fig. 1. The location of the absolute maximum P of the phase function A (x, y) in the domain of integration [0, 1] x [0, 1] in (19) depends on the
relative value of its parameters u, v, , 8 and y: If u(1 — ) > 1 and v(e — y) > «, then P = (xq, yo). If u(1 — B) <1 and v(¢ — y) > «, then
P=(,yp).Ifu(l1—p)>1land v(e —y) <o, then P = (xg, 1). If u(1 — B) <1and v(e —y) <, then P =(1,1).

The standard Laplace method is difficult to apply to the integral (18). As we have shown in the example of the
F> function, a much simpler method consists of an expansion of the function f(x, y) in (19) at the maximum P of
h(x,y) in D (one of the points (xg, ¥0), (1, yo), (x0, 1) or (1, 1)). But then, the expansion so obtained is not uniform
in the parameters u(1 — ) and v(1 — y /). The purpose of this section is to show that the simplified Laplace method
introduced in the previous section for the F> function can be straightforwardly converted in a uniform method.

In order to simplify the discussion and show the uniformity of the method, we restrict ourselves to the case
v(¢ —y) > «. Then, 0 < yg < 1 and h(x, y) attains its maximum at (xg, yo) € D if u(1 — ) > 1 or at (1, yg) if
u(1 — B) < 1. The method is uniform if we replace the function f(x,y) in (19) by its Taylor expansion, not at the
point (xo, yp) or at the point (1, yp), but at both points simultaneously. Because the second components of these two
points coincide, we will consider expansion (A.14) with z1 = x¢, z2 = 1, w1 = w2 = yo (see Appendix A). For sim-
plicity in the exposition, we consider the case N = 1 in (A.14) (the general case for arbitrary N is a straightforward
generalization)

fx,y)=A0,0+ Bo,ox + Co,0y + Do,oxy + ri(xo, 1, yo, Yo, x, ¥), (21
with
Ao S (xo, yo) — x0.f (1, yo) — Yo fy(x0, yo) + xo0yo0 fy(1, yo)
0,0 = T x ,
Boo— f (1, y0) — f(x0, yo) — yo Sy (1, yo) + yo fy (x0, yo0)
0,0 T x ,
c Sfy(xo, yo) — xo0.fy (1, yo)
0,0= ,
1—xo
D fy(L, y0) = fy(xo, yo)
0,0 =
1—xo
and
ri(xo, 1, y0, 0. %, ) = O([|(x — x0.y — yo) | | (x = L,y = »0) |)) (22)

when (x, y) — (xo, yo) and (x, y) — (1, yp). Substitution of the approximation (21) into (19) and this one into (17)
yields

F4(a, b,c,d;u(l —v),v(l — u)) = F(a,b,c,d;u,v)+ Ri(a,b,c,d;u,v), 23)
with
F(a,b,c,d;u,v)
')

=T (@I (c —a)l(d—b)
x {Aoo®(a—1,b, A, B,uyd(b—1,a, B, A, v)+ Boo®(a,b, A, B,uyd(b—1,a, B, A, v)
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+ Co,0®(a—1,b,A, B,u)®(b,a, B, A,v) + Do o®P(a,b, A, B,u)®(b,a, B, A, v)}, (24)
1
®(a,b, A, B,u) = /x“(l — AT A —ux)! A B gy (25)
0
and
L'(c)l'(d)

R] (a, b, C,d; u, U) = ]"(a)F(b)F(C _ Cl)r(d — b)

1 1
X /dx/dye(afl)h@’y)(l —0Ala - y)Bilrl(xo, 1, yo, Y0, X, ¥). (26)
0 0

The functions @ (a, b, A, B, u) can be evaluated in terms of hypergeometric functions and we obtain
F(a,b,c,d;u,v)=Ao02F1(c+d—a—1,a;c;u)2Fi(c+d—b—1,b;d;v)

+ BooSaFi(c+d—a—1,a+lic+ iunFi(c+d—b—1,b;d;v)
C
b
+Co,052F1(C+d—a—l,a;C;u)zFl(C-i-d—b—l,b-i-l;d-i-l;v)

+D0,0g2F1(c+d—a— La+1l;c+ LupFi(c+d—b—1,b+1;d+ 1;v). (27)
To obtain the asymptotic behaviour of @ (a — s, b, A, B, u), and then of F(a, b, ¢, d; u, v), we rewrite the integral
D(a—s,b, A, B,u) for s =0, 1 given in (25) as a Laplace integral
1
®(a—s,b,A, B, u)= / elaDlogx—plogl—un) (| _ yA=lyl=s gy = g0, 1. (28)
0
In this integral, a — oo and u, 8, A are fixed. Applying the first order approximation given by the standard Laplace

method to the integral (28), we deduce that
e(a—l)(logxo—ﬂlog(l—uxo))o(a—%) ifu(l —g)>1,
d(a—s,b,A,B,u)= e*(afl)ﬁbg(lfu)@(a*%) ifu(l—pg)=1,
e~ (@=Dplog(l-1) (=4 ifu(l—p) <1.
On the other hand, as v(a — y) > «,
&b —s,a,B,A,v)= e(“fl)(“]ogyof”log(lfvy(’))@(af%), asa — oo, s =0, 1.
Introducing this in (24) we find that, when a — oo,

@ D00y ifu(l —p) > 1,

@D O@E= ") ifu(l — ) =1,
@ DR O(G=A=2) if u(l — B) < 1.
In order to find the asymptotic behaviour of the remainder Ry (a, b, ¢, d; u, v), take into account the bound for the
remainder rq(xg, 1, yo, Yo, X, ¥) given in (22) in the integral defining R;(a, b, ¢, d; u, v) in (26). Applying the first
order approximation given by the standard Laplace method to the integral (26) in the same way we have done for @
in the integral (28), we find that, when a — oo,
e D00 0@ =32y ifu(l—B) > 1,
') A43
Ri(a,b,c,d;u,v) = ————= x { @ DM10OG™"2) ifu(l-p)=1,
FOrd) @F) itul=p)
e@= D130 O@E=472) ifu(l—p) < 1.
Then, (23) is an asymptotic approximation of Fy(a, b, c,d; u(1 — v), v(1 — u)) for large positive a, b, ¢ and d with
fixed and positive ¢, B and y. The approximation is uniform in the parameter u(1 — ). Table 2 shows a numerical
experiment about the accuracy of the approximation (23).

_TOr@

F(a,b,C,d,M,U)—m
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Table 2

Relative errors in the approximation (23) of Fy(a, b, ¢, d; u(1 — v), v(1 — u)) for different values of a, b, ¢, d, u and v.
For the value of u in the second row, the phase function £ (x, y) attains its maximum in D at (xg, yg), whereas for the
values of u in the third row, & (x, y) attains its maximum in D at (1, yg)

u a=10,b=11 u a=50,b=>51 u a=280,b =281
c=d=12,v=-55 c=d=52,v=-30 c=d=82,v=-60

-3 0.089083 —25 0.059411 —55 0.032388

-1 0.102995 —10 0.084271 -19 0.078083

4. Concluding remarks

We have considered representations of the second and fourth Appell functions in terms of double integrals. We have
studied in these two particular examples of double integrals a simplification of Laplace’s method introduced in [2]
for simple integrals. We have seen that the method introduced in [2] can be easily generalized to double integrals,
obtaining two asymptotic expansions of these two special functions when four of their parameters are large and
positive. As it happens for simple integrals, the method is uniform when two critical points of the phase function
coalesce or a critical point crosses the boundary of the integration domain. Uniformity requires a Taylor expansion
of the integrand at all of the asymptotically relevant points of the phase function (critical points and/or boundary
points) simultaneously. To this end, in Appendix A, we have generalized the theory of two-point Taylor expansions
of one-variable analytic functions to the case of two-variable analytic functions. We have given details on the regions
of convergence (products of Cassini ovals) and on the representations of the coefficients and the remainders of the
expansions in terms of Cauchy integrals.

Appendix A. Two-point Taylor expansions of analytic functions of two variables

Theorem A.l. Let f(z, w) be an analytic function on an open set §21 x §2o € C x C, z1,z2 € §21 with 71 # 22 and
w1, w2 € §2 with w1 # wy. Then, f(z, w) admits the two-point Taylor expansion

N—1 n

f@o)=Y"Y [ann-n(1, 22, 01,0:)E = 21)(@— o)

n=0 m=0

+ amn-m(z1, 22, W2, w1)(z — 21)(@ — @2) + A .n—m (22, 21, ©1, ©2)(z — 22) (® — W1)

+ amon-m (22,21, 02, 01) (2 — 22) (@ — @) |z — 2D)" (2 — 22)" (@ — 1) " (@ — )" "
+rn(z1, 22, 01, W2; 2, W), (A.1)

where ry (21,22, w1, ®2; 2, 0) = O(|(z — 21,0 — @D |V (2 — 22, 0 — @) |V) when (z, w) > (21, @1) or (2, 0) >
(z2, w2) and the coefficients an, , of the expansion are given by the double Cauchy integral

mn (21,22, 01, @) = ' ’
721,22, 01, W) 27i)2 (22 — 2) (@2 —w1) ] (= 21)" (u — 22)" ; (v — )" (v — wp)"t!

The contours of integration C1 and Cy are simple closed loops that encircle the points 7 and zo and w and wy,

respectively in the counterclockwise direction and also the point z and are contained in §21 and $§2,, respectively (see
Fig. 2).

The expansion (A.1) is convergent for (z, ) € 021 5 X OZ)] wy» Where OZI1 2, and 03)1 w, are the Cassini ovals

ol . =lze, |G-z -)|<n}, 02, =loec2, |(®—o)®-w)| <} (A.3)

21,22 — wl,w2

with ry = inf,cc\@, {| (v — 21) (4 — z2)|} and r» = infycc\2, {|(V — w1) (v — w2)l}.

Proof. By Cauchy’s theorem

f(u, v)dv
fz,w) = (2n1)2/u—zf (A4)
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Fig. 2. Contours C; and C, in Theorem A.1.

where C; and C; are the contours defined above. We write
I ztu—-z1—2 1

u—z =z —z) | — E=E0ED)
(u—z1)(u—z2)

and
1 w+vV—w —w 1

U_w_(v—wl)(v—wzﬂ—%.

We introduce the expansion

(A5)

(A.6)

in (A.5) and (A.6) for s = G=2DE=2) gpq g = @=0)@=w) peqpectively, and these in (A.4). After straightforward

(u—z1)(u—22) (v—w1)(v—an)’

calculations we obtain (A.1)—(A.2) with

N-—1
1 ztu—z1—22 (z—z21)"(z—22)"
ry (21,22, 01, w2} 2, W) = Z

n=0 (27'[1)26 (w—z1)u—22) (u—2z1)"(u — z0)"
1
fu,v)dv TN
) / -0V - o)’V - w) (0 —w1)" (0 —w)
C

+NZ_1 1.2 w+v—w —w (a)—wl)”:(w—a)z);”
@] e =) e —e)

X/(M—Zl J,v)du -V -V
C

W —22)Nu—2)

+ ! / du z—z2)N @z -2V

(2711')20 (u—zDONw—22)N W —72)

1
u,v)dv

X/(v—wl);((v—zoz)N(v—w)(w_wl)N(w_wZ)N

C

N—1N—-1
=Y Y [amN-14n-m (1, 22, 01, 02) (2 — 21) (@ — 1)

n=1 m=n

+ am, N—14n-m (21, 22, w2, w1) (2 — 21) (0 — w2)
+ @, N—14n-m (22,21, 01, 02)(2 — 22) (0 — 1)
+ am N—14n-m (22,21, @2, 01) (2 — 22) (@ — @2) ]

x (z—z)"(z—22)" (0 — wl)N—1+n—m (w — wz)N—1+n—m.

(A.7)
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For any (z,w) € 021,2,2 X Oil‘wz, we can take contours C; € 21 and Cp € §2; such that |(z — z1)(z — 22)| <
[ —z1)(u —z2)|, Yu € C1 and |[(w — w1)(w — w2)| < [(v — w1)(v — w2)]|, Vv € C3. In these contours, | f(u, v)]| is
bounded by some constant C: | f (u, v)| < C. Introducing these bounds in (A.7) we see that |ry (21, 22, @1, @2; 2, ®)| <
Cy(l(z—z1, 0 — oDV I(z — 22,  — @) ||V), with Cy independent of z and w, and also that limy_, 0 ¥y (21, 22,

w1, w3; Z, ®) = 0 and the proof follows. O
A.l1. A more explicit form of the coefficients

Formula (A.2) is not appropriate for numerical computations. A more practical formula to compute the coefficients
of the above two-point Taylor expansion is given in the following proposition.

Proposition A.1. Coefficients an (21, 22, w1, ®2) in the expansion (A.1) are also given by the formulas

f(z2, w2)

ap,0(z1, 22, w1, W2) = . (A.8)
(22 — z21) (w2 — @1)
Form=1,2,3,...,
( ) 1 i (m+k =D (=D mf k0 () wr) + (= D¥kf K0 (24, wn)
a , 22, W1, W) = .
O IR OO oy o & T — ! mi(er — 22" k]
(A.9)
Forn=1,2,3,...,
1 &G+ j— DD fOn=D (2, wn) + (= 1) j O (25, 1)
, 22, W1, = - . A.10
aO,n(Zl 22, W1 602) e JX_(:) j!(l’l—j)! n!(w1 _a)z)ﬂ-‘rj-I—l ( )
Form,n=1,2,3,...,
( ) ii (m+k—1)! (n+j—1)
a . , W1, W = "
mnel 22, @1, 62 S Skl — R mi(zy — 22Tl = k(o) — @)
X [(=D)"™ P mnf =R =0) (25 ) 4 (= 1) R0 (2 o)
+ (=" e R =D) (21 ) + (= D kG PO R (24 )] (A.11)

Proof. We deform the contour of integration C; in Eq. (A.2) to any contour of the form C 11 U Cf also contained in £21,
where Cl1 (Clz) is a simple closed loop which encircles the point z1 (z2) in the counterclockwise direction and does
not contain the point z; (z1) inside. Analogously, we deform the contour of integration C, in Eq. (A.2) to any contour
of the form 621 U C% also contained in £2,, where Cé (C%) is a simple closed loop which encircles the point w; (w;) in
the counterclockwise direction and does not contain the point w, () inside. Then,

1

Qri)2(z2 — z21) (w2 — w1)

2 2
du fu,v)dv
. A.12
XZZ/(M—ZD’"(M—@)”‘“/(v—wl)”(v—wz)”“ A2
ci ci

am,n(Zl ’ ZZ» wlv 602) =

i=1 j=1

Taking into account considerations pointed out in Fig. 3 and the Cauchy formula for the derivatives,
( ) 1 1 gm—1 gn—l fu,v)
a 1,22, 01, W) =
e O O G =2 @2 —wn) | On = D= D1own=T 90T\ (u — 20" (0 — wn)" 7]

1 gm—1 gn ( fu,v) )

(m — Dln! dum=1 9" \ (u — 22)" 1 (v — wy )"

u=z
V=w]

+

u=z|
v=w)
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Fig. 3. The following analyticity properties are satisfied by the functions appearing in the integrands of (A.12): (a) The function (z — 12)_’"_1 X
(v — 7)1 f(u, v) is analytic inside C] x C1. (b) The function (u — 25) ™~ (v — @) ™" f (u, v) is analytic inside C] x C3. (¢) The function
u—z1)™w-— 01)2)_”_l f(u, v) is analytic inside Cl2 X Czl. (d) The function (u — z1) ™" (v — w1) ™" f (u, v) is analytic inside C12 X C%.

N L am ! fu,v) >
mi(n — 1)1 du™ v\ (u — 21)" (v — wy)"+!

n 1 9" 9" f(u,v)
m!n! du™ v \ (u — z21)" (v — w1)"

From here, Egs. (A.8)—(A.11) follow after straightforward computations. O

u=z3
V=w]

w—ts } . (A.13)

vV=w)

A.2. An alternative form of the expansion

The expansion (A.1) is not valid when z; = z2 and/or w; = w;. In this case, the coefficients a,, , (21, 22, w1, @2)
diverge as 71 — zp and/or w| — w3, although the remainder ry(z1, z2, @1, w2; Z, @) remains well defined. In order to
avoid this inconvenience, we consider the following alternative representation:

N-1 n
f@©) =" [Amn-m+ Bun-mz+ Conn-m®+ Dy n-mze]
n=0 m=0
x (z=21)"(z = 22)" (@ — @1)" " (@ — 02)"" + 1N (21, 22, 01, 025 2, W), (A.14)
with
Amn =21010m 0 (21, 22, 01, @2) + 210201 1 (21, 22, W2, ©1) + 2201 1 (22, 21, ©1, @2)
+ 22020m 1 (22, 21, W2, ®1),
B = —o1]amn(z1, 22, 01, 2) + am (22, 21, 01, ©2) | — @2[amn (21, 22, @2, 01) + G (22, 21, @2, 01) ],
Cm,n =—21 [am,n(zls 22, w1, w2) + am,n(le 22,w2, U)l)] - Z2[am,n(z29 21, w1, @2) + am,n(ZZe 21, w2, a)l)]s
and

Dm,n :am,n(zl’ 22, w1, W2) +am,n(Zlv 22, w2, W) +am,n(z27 71, w1, W2) +am,n(Z2’ 21, w2, W1), (A.15)

which are regular when z; — z» and/or w; — w». In fact, we have

1 (u—2z1—22)du (w—w; —w) f(u,v)dv
Am n=— .
’ (Zﬂl)zc [ —z1)(u — z2)]"+! [(v— 1) (v —w)]"t!
1 2
B = 1 / du (v —w; —wy) f(u,v)dv
T2 ) [u—z)w—2)1" ] (v — o) — w)]rt!
Cl CZ
coo 1 (u—z1—2z2)du / f(u,v)dv
" ri? ) (-2 -2 ] (v =)@ — o)t

Cl Cz
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and

D = 1 / du / fu,v)dv
e (2m‘)2c [ — z1)(u — z2)]"+! J [(v— @) (v —w) ]!
1

2
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