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Abstract

We consider a singularly perturbed convection–diffusion equation,−��u + −→v · −→∇ u = 0 on an arbitrary sector
shaped domain,� ≡ {(r, �)|r >0,0< � < �} being r and� polar coordinates and 0< � <2�. We consider for
this problem discontinuous Dirichlet boundary conditions at the corner of the sector:u(r,0) = 0, u(r, �) = 1. An
asymptotic expansion of the solution is obtained from an integral representation in two limits: (a) when the singular
parameter� → 0+ (with fixed distancer to the discontinuity point of the boundary condition) and (b) when that
distancer → 0+ (with fixed �). It is shown that the first term of the expansion at� = 0 contains an error function.
This term characterizes the effect of the discontinuity on the�-behaviour of the solution and its derivatives in the
boundary or internal layers. On the other hand, near discontinuity of the boundary conditionr = 0, the solution
u(r, �) of the problem is approximated by a linear function of the polar angle�.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Mathematical models that involve a combination of convective and diffusive processes are quite im-
portant in all of science, engineering and other fields where mathematical modeling is required. Very
often, the dimensionless parameter that measures the relative strength of the diffusion is very small. This

∗ Corresponding author.
E-mail addresses:jl.lopez@unavarra.es(J.L. López),ester.perez@unavarra.es(E. Pérez Sinusía)..

0377-0427/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.11.014

http://www.elsevier.com/locate/cam
mailto:jl.lopez@unavarra.es
mailto:ester.perez@unavarra.es


2 J.L. López, E. Pérez Sinusía / Journal of Computational and Applied Mathematics 181 (2005) 1–23

implies that thin boundary and/or interior layers are present in the solution and singular perturbation
problems arise. This kind of problem appears, for example, in fluid or gas dynamics[15,23], heat transfer
[2,3], theory of plates and shells[13], or magnetohydrodynamic flow[8,19]. An extensive selection of
singularly perturbed convection–diffusion problems of the physics or engineering may be found in[17]:
pollutant dispersal in a river estuary, vorticity transport in the incompressible Navier–Stokes equations,
atmospheric pollution, groundwater transport, turbulence transport, etc. Besides the small perturbation
parameter, another source of singular behaviour for the solution are the (possible) discontinuities of the
boundary data: think for example in transportation of contaminant in a riverwith a source of contamination
located on a finite portion of the side of the water.
Mathematically speaking, a singularly perturbed convection–diffusion problem is a boundary value

problem of the second order in which the coefficients of the second-order derivatives are small. In this
paper, we focus our attention on two-dimensional linear convection–diffusion (elliptic) problems of the
form: find a functionu ∈ C(�̄) ∩ D2(�) such that

{−��u + −→v · −→∇ u = h(x), x ∈ � ⊂ R2,

u(x)|�� = f (x̃), x̃ ∈ ��,
(1)

where� is a small positive parameter,−→v is the convection vector,h(x) is a nonhomogeneous term,x̃ is
a variable which lives in��, f (x̃) is the Dirichlet datum andD2(�) is the set of functions with partial
derivatives up to order two defined in all points of�.
The location and shape of the boundary layers ofu depend, among other things, on the prescribed

velocity field −→v , on the shape of the boundary�� and on the existence of discontinuities inf (x̃).
For example, regular boundary layers of sizeO(�) appear on the outflow boundary, whereas parabolic
boundary layers of sizeO(

√
�) appear along the characteristic boundaries. For more details on the shape

and nature of boundary layers see for example[5–7,9,10]and references therein.
The knowledge of an asymptotic expansion for the solution may help in the development of a suitable

numerical method for these kind of problems because it gives the qualitative behaviour of the solution
[24, p. 6]. An �-uniformly convergent method requires the analysis of uniform convergence and then,
accurate error bounds for the local error. The accuracy of these error bounds depends on the precision
in the approximation given by the first terms of the asymptotic expansion. The design of the numerical
technique is based on the exact integration of the first terms of the asymptotic expansion or of functions
which have a similar behaviour in the singular layer. Along this line, some references which propose
exponential fitting techniques or special meshes based on asymptotic expansions are[4] or [11]. A
classical reference is[16].
To get the exact solution of a boundary problem in terms of elementary functions is, in general, an

impossible mission. Then, an approximation of the solution adapted to the singular character of this
kind of problems (an asymptotic expansion) is of interest. There is an extensive literature devoted to the
constructionofapproximatedsolutionsof singularperturbationproblemsbasedonmatchingofasymptotic
expansions. The book of Il’in[10] contains a quite exhaustive and general analysis for different equations
and domains. Other important references are for example[6,12]or [18]. However, a perturbative analysis
based on an expansion of the solution in powers of the perturbation parameter does not always work for
discontinuous Dirichlet boundary conditions[22]. This is so, because the coefficients of the expansion
contain derivatives of the boundary condition, whereas the solution of the elliptic problem (1) is smooth
inside the domain.
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If the Dirichlet datumf (x̃) is continuous except at a finite number of points, where it presents jump
discontinuities, thenf (x̃) = g(x̃) +∑n

k=1ak�(x̃ − x̃k), whereg(x̃) is continuous,ak ∈ R and� denotes
the step function. We can decompose (1) into the problem:

{−��u + −→v · −→∇ u = h(x), x ∈ � ⊂ R2,

u(x)|�� = g(x̃), x̃ ∈ ��,
(P0)

plusn problems of the form:

{−��u + −→v · −→∇ u = 0, x ∈ � ⊂ R2,

u(x)|�� = �(x̃ − x̃k), x̃ ∈ ��.
(Pk)

An asymptotic expansion for(P0) may be obtained by the method of matching asymptotic expansions
[10]. An asymptotic expansion for the problems(Pk) may be obtained from an exact representation of
the solution.
Some particular problems of form(Pk) have been already considered in the literature. For example,

HedstromandOsterheld[9] studied the problem��u−�yu=0 on the positive quarter planewith boundary
conditionsu(x,0) = 0 andu(0, y) = 1. They obtained the first two terms of the asymptotic expansion
of u for � → 0+ from a Fourier integral representation ofu. The first term of this expansion is an error
function. A more detailed investigation has been developed in[20]: an integral representation foru is
obtained from the associated Helmholtz equation and a complete asymptotic expansion ofu for � → 0+
is derived from this integral representation. The same equation��u − �yu = 0, but in a generic sector,
is considered in[21], where an integral representation foru is obtained from the associated Helmholtz
equation. Different asymptotic expansions as� → 0+ are obtained depending on the angle of the sector
and again the error function plays an important role in the analysis. A similar problem defined in the
interior of a circle is analyzed in[22]. In all these problems, the approximation is not valid near the
discontinuities of the boundary condition.
In this paper we try to shed light on the influence that the discontinuities in the boundary conditions on

corner points of the domain have on the boundary or interior layers of the solution.Wewant to investigate
if, as in the examples mentioned, the solution is approximated by an error function. For this purpose we
analyze the problem−��u + −→v · −→∇ u = 0 on a general sector with a discontinuous boundary condition
at the corner of the sector. We consider a general convection vector−→v (in [21], −→v = (0,1)) because
the location and size of the singular layers depend also on the relative direction of−→v with respect to
the sector: boundary layers appear if−→v points out of the sector, whereas interior layers are present if−→v points into the sector. As in the references mentioned in the paragraph above, the starting point to
analyze the problem is an integral representation of the solution.We approximate the solution by deriving
asymptotic expansions from this integral, not only in the singular limit� → 0+, but also in the limit
r → 0+, wherer represents the distance to the discontinuities. Then, we approximate the solution on the
whole domain, including the neighbourhood of the discontinuity pointr = 0. For the approximation in
the singular limit we use similar techniques to those used in[20].
In Section 2 we obtain an integral representation for the solution. In Section 3 we derive an asymptotic

expansion of the solution for� → 0+ whereas in Section 4 we derive an asymptotic expansion for
r → 0+. Some comments and conclusions are postponed to Section 5.
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2. The problem and its exact solution

Weuse polar coordinates to describe an infinite sector�̄ of amplitude� in the planewith its corner point
removed:x = r cos�, y = r sin �, (r, �) ∈ �̄ ≡ (0, ∞) × [0, �]. Its interior set is� ≡ (0, ∞) × (0, �)

(seeFig. 1(a)).
Weconsider a singularly perturbedconvection–diffusionproblemdefinedon this sectorwith an “infinite

source of contamination” located at one side of the sector:{
U ∈ C(�̄) ∩ D2(�) and U bounded atr = 0,

−��U + −→v · −→∇ U = 0 in �,

U(r,0) = 0 andU(r, �) = 1 for r >0,

(2)

where−→v ≡ (cos�, sin �) is a constant vector,� >0 is a small parameter, 0�� <2� and 0< � <2�.
(Observe the discontinuous Dirichlet condition at the cornerr = 0.)
After thechangeof theunknownU(r, �)=1−F (r, �)exp(−→v ·−→r /(2�)),where−→r ≡ (r cos�, r sin �),

problem (2) is transformed into theYukawa equation forF (r, �):{
F ∈ C(�̄) ∩ D2(�) and F bounded atr = 0,

�F − w2F = 0 in �
F (r,0) = e−wr cos� andF (r, �) = 0 for r >0,

(3)

wherew ≡ 1/(2�).
We will obtain a solution of problem (3) and therefore of problem (2) in Proposition 2, but this solution

may not be unique unless we impose a convenient condition uponU(r, �) (or uponF (r, �)) concerning
its growth at infinity. Then, we add a radiation condition to (2) and consider the following problem:



U ∈ C(�̄) ∩ D2(�) and U bounded atr = 0,

−��U + −→v · −→∇ U = 0 in �,

U(r,0) = 0 andU(r, �) = 1 for r >0,

U(r, �) = ��,�+� + o

(
ewr(1+cos(�−�))

√
wr

)
asr → ∞ and� ∈ (0, �).

(P )

In what follows,	A(x) represents the characteristic function of the setA and�a,b is the Kronecker
delta:

	A(x) ≡
{
1 if x ∈ A,

0 if x /∈ A,
�a,b ≡

{
1 if a = b,

0 if a �= b.

We have the following uniqueness result:

Fig. 1. (a) Domain�̄ ≡ (0, ∞) × [0, �] of problem(P ). (b) Indented region�∗ ≡ (r0, ∞) × (0, �) in Theorem 1.
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Proposition 1. Problem(P ) has at most one solution.

Proof. Suppose thatU1 andU2 are two solutions of(P ). Then, the functionG(r, �) ≡ (U1(r, �) −
U2(r, �))e−wr cos(�−�) verifies:



G ∈ C(�̄) ∩ D2(�) and G bounded atr = 0,

�G − w2G = 0 in �
G(r,0) = 0 andG(r, �) = 0 for r >0,

G(r, �) = o

(
ewr

√
wr

)
asr → ∞ and� ∈ (0, �).

(4)

Consider the following auxiliary function defined on�̄ and atr = 0:

Va(r, �) ≡
{ G(r, �)

Ha(wr)
if r �= 0,

0 if r = 0,
Ha(wr) ≡ K0(wr) + I0(wr) + a,

whereK0 andI0 are modified Bessel functions of order zero anda is a positive constant. The function
Ha(wr) is positive forwr >0, of the orderO(ewr/

√
wr) aswr → ∞ andO(log(wr)) aswr → 0 [1,

Eqs. (9.7.1) and (9.6.13)]. Moreover,Ha(wr) ∈ C(�̄)∩D2(�) and satisfies the equation:�Ha −w2Ha +
aw2 = 0 in � [1, Eq. (9.6.1)]. Therefore, the auxiliary functionVa is continuous on̄� and atr = 0 and
verifies:


�Va + 2

Ha

−→∇ Ha · −→∇ Va = aw2

Ha

Va in �,

Va(r,0) = Va(r, �) = 0 ∀ r >0,

limr→0Va(r, �) = limr→∞Va(r, �) = 0 ∀ � ∈ [0, �].

Consider the open finite sector of radiusR: �R ≡ (0, R) × (0, �). At points(r, �) ∈ �R where
−→∇ Va = 0

andVa �= 0, we have thatVa ·�Va >0. Therefore,Va has not positive relativemaximums neither negative
relative minimums in�R. Then Sup�R

|Va|�Sup��R
|Va|.

Using that limr→∞Va(r, �) = 0 we have that,∀� >0, there is aR >0 such that|Va(R, �)|��.
On the other hand,Va(r,0) = Va(r, �) = 0 ∀r >0 and limr→0Va(r, �) = 0 ∀� ∈ [0, �]. Therefore,
|Va(r, �)|�� ∀� >0 and every(r, �) ∈ �R. Taking the limit� → 0 (R → ∞) we have thatVa = 0 on
�̄. Therefore,G = 0 andU1 = U2 on �̄. �

Remark 1. Only for � = � ± �, the radiation condition given in the last line of(P ) specifies a precise
limit of U at r = ∞: limr→∞U(r, � + �) = 1 and limr→∞U(r, � − �) = 0. For the remaining values
of � ∈ (0, �), that radiation condition allows an exponential growing ofU at r = ∞. That is, to have
uniqueness in problem (2), we require to specify a precise radiation condition in the direction� = � + �
or� = � − � only if one of these directions is contained in the sector. In other directions of the sector we
only require a not too wild growing ofU. A geometrical interpretation of this is the following: uniqueness
requires forU to have a defined value at the inflow boundary. Uniqueness requires the convection vector−→v to drag a concrete boundary value inside�. When the inflow boundary has not a defined boundary
condition, the vector−→v does not drag any specific value inside� and uniqueness is not assured (see
Fig. 2).
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Fig. 2. (a)–(b) The inflow boundary is contained in the union of the boundary lines� = 0 and� = � if � ± � /∈ (0, �). (c)–(d)
The inflow boundary is not contained in the union of those boundary lines and “contains a portion of arc at the infinity” if
� + � ∈ (0, �) or � − � ∈ (0, �).

In order to construct the unique solution of problem(P ) we will need the following function defined
by means of an integral:

Definition 1. We define the function

I�,�(r, �) ≡ ewr cos(�−�)

2�

∫ ∞

−∞
e−wr cosh t sin(
�)

cosh[
(t − i�)] − cos(
�)
dt, (5)

where
 ≡ �/�. It must be implicitly understood in the above formula that, when� = ±� + 2k� with
k ∈ Z, the following Cauchy principal value must be taken on the integral:

I�,�(r, ±� + 2k�) ≡ ± ewr cos(�∓�−2k�)

2�

× lim
�→0+

{∫ −�

−∞
+

∫ ∞

�

}
sin(
�)e−wr cosh t

cosh[
(t − i�)] − cos(
�)
dt. (6)

Lemma 1. The functionI�,�(r, �) is well-defined for any(r, �) ∈ �̄, � ∈ [0,2�) and� ∈ (0,2�).

Proof. If � �= ±� + 2k�, k ∈ Z, the integral in (5) is convergent because the integrand is a continuous
function oft ∀t ∈ R and it is exponentially decaying att = ±∞.
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If �=±�+2k�, k ∈ Z, the integrand in (5) has a pole att =0 which is removed by taking the Cauchy
principal value as given in (6). Indeed,

lim
�→0+

{∫ −�

−∞
+

∫ ∞

�

}
e−wr cosh t

cosh[
(t − i�)] − cos(
�)
dt

=
∫ ∞

−∞
e−wr cosh t cos(
�)[cosh(
t) − 1]

cos2(
�)[cosh(
t) − 1]2 + sin2(
�)sinh2(
t)
dt.

This last integral is convergent because the integrand is a continuous function oft ∀t ∈ R\{0} with a
removable singularity att = 0 and it is exponentially decaying att = ±∞. �

In the following lemma, we construct an explicit solution of problem (3) as a generalization of the
solution derived in[21] for � = �/2. From this solution we will obtain the unique solution of problem
(P ) in Proposition 2.

Lemma 2. Let
 = �/�. The function

F (r, �) =


e−wr cos� if � = 0
1

2�

∫ ∞+i�

−∞+i�
e−wr cosh t sin(
�)

cosh[
(t − i�)] − cos(
�)
dt if � ∈ (0, �] (7)

is a solution of problem(3).

Proof. For� �= 0 the integrand in the second line of (7) is a continuous function oft and exponentially
decaying att =±∞ for r �0 and� ∈ (0, �]. Therefore,F (r, �) is well defined on̄� and bounded atr =0.
On the other hand, using uniform convergence, we see thatF is twice differentiable in(0, ∞) × (0, �).
Moreover, the function

W(t, �) ≡ 1

2�

sin(
�)

cosh[
(t − i�)] − cos(
�)

satisfies the equation

�2W
�t2

+ �2W

��2 = 0, ∀t ∈ C and� ∈ (0, �).

Using these facts, it can be easily shown that the functionF (r, �) verifies the equation�F − w2F = 0
in �. The conditionF (r, �) = 0 is satisfied trivially and

lim
�→0

F (r, �) = lim
�→0

1

2�

∫ ∞

−∞
e−wr cosh(t+i�) sin(
�)

cosh(
t) − cos(
�)
dt

= lim
�→0

1

2�

∫ ∞

−∞
e−wr cos� sin(
�)

cosh(
t) − cos(
�)
dt

+ lim
�→0

sin(
�)

2�

∫ ∞

−∞
[e−wr cosh(t+i�) − e−wr cos�]

cosh(
t) − cos(
�)
dt

= lim
�→0

e−wr cos� � − �

�
+ 0= e−wr cos�. �
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In the following proposition we obtain the explicit solution of problem(P ) in a more tractable form
than in Lemma 2. In what follows, empty sums must be understood as zero.

Proposition 2. Letw ≡ 1/(2�). Then, for (r, �) ∈ � and� ∈ [0,2�), the solutionU�,�(r, �) of problem
(P ) is:

1. If � = 0,

U�,0(r, �) = 1− I�,0(r, �); (8)

2. If 0< � < �,

U�,�(r, �) = 	(�,�](�) + 1
2��,� − I�,�(r, �); (9)

3. If � = �,

U�,�(r, �) = −I�,�(r, �); (10)

4. If � < � < � + �,

U�,�(r, �) = ewr cos(�−�)




[ �+�
2� ]∑

k=1

e−wr cos(�+�−2k�) −
[ �−�

2� ]∑
k=1

e−wr cos(�−�−2k�)

+ 1

2
e−wr

(
��−�

2� ,[ �−�
2� ] − ��+�

2� ,[ �+�
2� ]

)
 − I�,�(r, �); (11)

5. If � + ���,

U�,�(r, �) = ewr cos(�−�)




[ 2�+�−�
2� ]∑

k=1

e−wr cos(−�+�+2k�) −
[ 2�−�−�

2� ]∑
k=0

e−wr cos(�+�+2k�)

+1

2
e−wr

(
� 2�−�−�

2� ,[ 2�−�−�
2� ] − � 2�+�−�

2� ,[ 2�+�−�
2� ]

)
 + 1− I�,�−2�(r, �); (12)

whereI�,�(r, �) is given in(5).

Proof. For convenience, we consider in this proof the angle

�̃ ≡
{

� if 0����,

� − 2� if � < � <2�
(13)

and observe that−� < �̃��. For reasons that will be clear in a moment, in principle, we restrict ourselves
to−�/2< �̃ < �/2.
Asolutionof (3)has justbeenobtained inLemma2.Then, the functionU�,�(r, �) ≡ 1−ewr cos(�̃−�)F (r, �),

with F (r, �) given in (7) is a solution of (2).
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The poles of the integrand in (7) are located at the pointst1k ≡ i(�̃−�+2k�) andt2k ≡ i(�̃+�+2k�),
k ∈ Z and the real part of the exponent reads−rw cosh(Rt) cos(It) with |It | < �/2 if |It |� |�̃| and
−�/2< �̃ < �/2. We can use the Cauchy Residue Theorem for shifting the integration contour in the
integralF (r, �) to the straight lineIt = 0. Therefore, we can write:

F (r, �) = 1

2�

∫ ∞

−∞
e−wr cosh t sin(
�)

cosh[
(t − i�̃)] − cos(
�)
dt

− 2�i sign(�̃)
∑
a∈R

Res{e−wr cosh tW(t, �); a},

whereR is the set of the poles ofW(t, �) located between the linesIt = 0 andIt = i�̃. Therefore, we
can write finally

U�,�(r, �) = 1− I�,�̃(r, �) + 2�i sign(�̃)ewr cos(�̃−�)
∑
a∈R

Res{e−wr cosh tW(t, �); a}, (14)

where sign(0) = 0 (in what follows we will use this convention). Formulas (8)–(12) for−�/2< �̃ < �/2
(0�� < �/2 or 3�/2< � <2�) follow from counting the poles inR. We distinguish several cases:
Case1: �̃ = 0.
R = ∅ (in this case it is not necessary to shift the integration contour toIt = 0 because we are already

on it).
Case2: 0< �̃ < �

2 and� > �̃.
R = {t10 = i(�̃ − �)} if �� �̃ andR = ∅ if � > �̃.
Case3: 0< �̃ < �

2 and� = �̃.
R = {t10 = i(�̃ − �)}.
Case4: 0< �̃ < �

2 and� < �̃.

R =
{

t1k = i(�̃ − � + 2k�), k = 0,1, . . . ,

[
�̃ − �

2�

]}

∪
{

t2k = i(�̃ + � + 2k�), k = 1,2, . . . ,

[
�̃ + �

2�

]}
.

Case5.1:−�
2 < �̃ <0 and� > − �̃.

R = {t20 = i(�̃ + �)} if �� − �̃ andR = ∅ if � > − �̃.
Case5.2:−�

2 < �̃ <0 and� < − �̃.

R =
{

t1k = i(�̃ − � + 2k�), k =
[

�̃ − �

2�

]
. . . , −1

}

∪
{

t2k = i(�̃ + � + 2k�), k =
[

�̃ + �

2�

]
, . . . ,0

}
.
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Case5.3:−�
2� �̃ <0 and� = −�̃.

R = {t20 = i(�̃ + �)}.
At thismoment, formulas (8)–(12)areasolutionof (2) for−�/2< �̃ < �/2 (0�� < �/2or3�/2< � <2�).

But it is routine to check that they are also a solution of (2) for the range of values of� appearing in
the statement of the proposition. From Theorem 1 below we have thatU�,�(r, �) satisfies the radiation
condition given in the last line of(P ). Therefore, it is the unique solution of problem(P ). �

Remark 2. Observe that the general structure of the solutionU�,�(r, �) of problem(P ) given in Propo-
sition 2 can be decomposed as

U�,� ≡ ��,� −
{

I�,� if 0�� < � + �,

I�,�−2� if � + ��� <2�,
(15)

where the function��,� denotes a linear combination of characteristic functions, Kronecker deltas and
exponential functions as it is detailed in the enunciate of Proposition 2. The functionI�,� is defined in
(5).
The solution of(P ) cannot be written in terms of known functions. But, for� → 0+ and r away

from 0, we can approximateU�,�(r, �) by an error function and elementary functions plus an asymptotic
expansion in powers of�. Forr → 0+ (and���0 >0), we can approximateU�,�(r, �) by an asymptotic
expansion in powers ofr. This is the subject of the two following sections.

3. Asymptotic expansion ofU�,�(r, �) in the singular limit

In this section we denote by�∗ the sector shaped domain indented at the pointr = 0 (seeFig. 1(b)):
�∗ ≡ (r0, ∞) × (0, �), r0 >0.
The proof of the main theorem of this section uses the following definition and lemma.

Definition 2. We define the functions

g(t, �, �, �) ≡ sin(
�)

2�[cosh(
(t − i�)) − cos(
�)] ; 
 = �

�
(16)

and

h(t, �) ≡ 1

4�i sinh 1
2(t − i�)

, (17)

where� is not an independent variable but a function of�, � and�:

�(�, �, �) ≡




� − sign(�)

(
� + 2�

⌊ |�|
2�

⌋)
if Frac

( |�|
2�

)
�
1

2
,

� + sign(�)

(
� − 2�

(⌊ |�|
2�

⌋
+ 1

))
if Frac

( |�|
2�

)
>

1

2
,

(18)

with sign(0) = 1. We define also

Ī (x, �, �, �) ≡
∫ ∞

−∞
e−x cosh t f (t, �, �, �)dt, (19)
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with

f (t, �, �, �) ≡ g(t, �, �, �) + sign(�)sign

(
1

2
− Frac

( |�|
2�

))
× [h(t, �(�, �, �)) − [��,0 + ��,� + ��,2�−�]h(t, −�(�, �, �))]. (20)

(Observe thatg(t, �, �, �) is part of the integrand in (5)).

Lemma 3. Let (r, �) ∈ �∗, � ∈ [0,2�), � ∈ (0,2�). Then, the functionĪ (x, �, �, �) given in Definition
2 has the following asymptotic expansion for large positive x:

Ī (x, �, �, �) = e−x

2
√
2x

[
n−1∑
k=0


(k + 1
2)

k!(2x)k
T (k)(0, �, �, �) + R̃n(x, �, �, �)

]
, (21)

where

T (u, �, �, �) = 2√
1+ u2

f (2arcsinhu, �, �, �) (22)

andT (k)(u, �, �, �) is the kth derivative of the functionT (u, �, �, �) with respect to u.
The remainderR̃n(x, �, �, �) satisfies a bound of the form

|R̃n(x, �, �, �)|�M̃

(n + 1/2)

n!(2xd)n (23)

for some positive constants̃M and d.

Proof. It is easy to check that the imaginary part of the functionf (t, �, �, �) given in (20) is an odd
function of t whereas the real part is even. Then, removing the odd part off (t, �, �, �) and performing
the change of variable sinh(t/2) ≡ u in (19) we obtain:

Ī (x, �, �, �) = e−x

∫ ∞

0
e−2xu2T (u, �, �, �)du, (24)

with T (u, �, �, �) given in (22) or, more explicitly:

T (u, �, �, �) ≡ 2

�

sin(
�)[c(u) cos(
(� − 2�)) − cos(
�)](1+ u2)−1/2

[c(u) cos(
(� − 2�)) − cos(
�)]2 + s2(u)sin2(
(� − 2�))

+ sign(�)sign

(
1

2
− Frac

( |�|
2�

))
(1+ ��,0 + ��,� + ��,2�−�)

2�

sin �

u2 + sin2 �
,

� given in (18) and

c(u) ≡ [u + √
u2 + 1]2
 + [u + √

u2 + 1]−2


2
,

s(u) ≡ [u + √
u2 + 1]2
 − [u + √

u2 + 1]−2


2
.

In these formulas we have used the equality arcsinhu = ln[u +√
u2 + 1] valid foru�1 [1, Eq. (4.6.20)].
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The functionT (u, �, �, �) has a Taylor expansion atu = 0 for each� ∈ (0, �), � ∈ [0,2�) and
� ∈ (0,2�):

T (u, �, �, �) =
n−1∑
k=0

T (k)(0, �, �, �)

k! uk + Tn(u, �, �, �), (25)

whereT (k) means thekth derivative of the functionT (u, �, �, �)with respect touandTn(u, �, �, �) is the
Taylor remainder. The points of singularity ofT (u, �, �, �) are away from the positive real axis. Using
the Cauchy formula for the remainderTn(u, �, �, �), we see that

|Tn(u, �, �, �)|�M̃
un

dn
, (26)

whereM̃ is a bound forT (u, �, �, �) on the portion of the complexw-plane surrounding the positive real
axis:{w ∈ C, |w − u| < d, u ∈ R+} andd represents the distance from the closest of the singularities of
T (u, �, �, �) to the positive real axis. Introducing the expansion (25) in (24) we obtain thatĪ (x, �, �, �)

has expansion (21) with

R̃n(x, �, �, �) ≡ 2
√
2x

∫ ∞

0
e−2xu2Tn(u, �, �, �)du. (27)

Introducing (26) in (27) we obtain (23).�

Theorem 1. Letw ≡ 1/(2�), (r, �) ∈ �∗, � ∈ [0,2�) and� ∈ (0,2�). Then, the solutionU�,�(r, �) of
problem(P ) given in Proposition2 reads

U�,�(r, �) = U0
�,�(r, �) + ewr(cos(�−�)−1)

2
√
2wr

U1
�,�(r, �), (28)

where:

1. If � = 0:

U0
�,0(r, �) = 1− erfc

√
wr(1− cos�). (29)

2. If 0< � < �:

U0
�,�(r, �) = 	(�,�](�) + 1

2��,� + 1
2 sign(� − �)erfc

√
wr(1− cos(� − �)). (30)

3. If � = �:

U0
�,�(r, �) = erfc

√
wr(1− cos(� − �)). (31)
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4. If � < � < � + �:

U0
�,�(r, �) = ewr cos(�−�)




[ �+�
2� ]∑

k=1

e−wr cos(�+�−2k�) −
[ �−�

2� ]∑
k=1

e−wr cos(�−�−2k�)

+1

2
e−wr

(
��−�

2� ,[ �−�
2� ] − ��+�

2� ,[ �+�
2� ]

)
 . (32)

5. If � + ���:

U0
�,�(r, �) = ewr cos(�−�)




[ 2�+�−�
2� ]∑

k=1

e−wr cos(−�+�+2k�) −
[ 2�−�−�

2� ]∑
k=0

e−wr cos(�+�+2k�)

+1

2
e−wr

(
� 2�−�−�

2� ,[ 2�−�−�
2� ] − � 2�+�−�

2� ,[ 2�+�−�
2� ]

)
 + 1. (33)

The functionU1
�,�(r, �) has an asymptotic expansion in powers ofw−1:

U1
�,�(r, �) =

n−1∑
k=0


(k + 1/2)

k!
T (k)(0, �, �, �)

(2wr)k
+ Rn(wr, �, �, �), (34)

where the coefficientsT (k)(0, �, �, �) are given in Lemma3 and are regular functions of r and� for
(r, �) ∈ �∗.
The remainderRn(wr, �, �, �) satisfies a bound of the form

|Rn(wr, �, �, �)|�M

(n + 1/2)

n!(2wdr)n , (35)

where M and d are positive constants.

Proof. For largew and fixedr, the asymptotic features of the integralI�,�(r, �) defined in (5) are: (i)
there is a saddle point att = 0. (ii) The poles are situated att1k = i(� − � + 2k�) andt2k = i(� + � + 2k�),
k ∈ Z. Then, the saddle point coalesce witht1k when� → � + 2k� or with t2k when� → −(� + 2k�).
Uniform asymptotic expansion of this kind of integrals are obtained by using the error function as the
basic approximant[25, Chapter 7, Section 2]. Therefore, we need to identify the poles in the integrand
of I�,�(r, �) which are closest to the pointt = 0 (to the real axis). We distinguish several cases:
Case1: � = 0.
In this case two poles,t10 = −i� andt20 = i�, touch the real axis when� runs from 0 to�. Therefore,

we split off both poles from the integrand ofI�,0(r, �) if we use (18) and (20):

� = −�, g(t, �, �,0) = h(t, �) − h(t, −�) + f (t, �, �,0),

where the functionsf, g andh are given in Definition 2.
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Using the complementary error function representation[20]

e−r cos � erfc
(√

2r sin
�

2

)
= 1

2�i

∫ ∞

−∞
e−r cosh t dt

sinh1
2(t − i�)

, 0< � <2�, (36)

we obtain that the integralI�,0(r, �) reads

I�,0(r, �) = erfc
√

wr(1− cos�) + ewr cos(�−�)Ī (wr, �, �,0), (37)

whereĪ (wr, �, �,0) is defined in (19).
Therefore, from (8) we obtain (28) withU0

�,0(r, �) given in (29) andU1
�,0(r, �) = −2

√
2wrewr

Ī (wr, �, �,0).
Case2: 0< � < �.
In this case, the polet10 = i(� − �) is the only one which crosses the real axis when� runs from 0 to

�. Therefore, we split off the pole of the integrand att10 if we use (18) and (20):

� = � − �, g(t, �, �, �) = −h(t, � − �) + f (t, �, �, �).

Using (36) we obtain that the integralI�,�(r, �) equals

I�,�(r, �) = −1
2 sign(� − �)erfc

√
wr(1− cos(� − �)) + ewr cos(�−�)Ī (wr, �, �, �). (38)

Therefore, from(9)weobtain (28)withU0
�,�(r, �)given in (30)andU1

�,�(r, �)=−2
√
2wrewr Ī (wr, �, �, �).

Case3: � = �.
In this case both poles,t10 = i(� − �) andt2−1 = i(� − �), touch the real axis when� runs from 0 to�.

Therefore, we split off these two poles from the integrand if we use (18) and (20):

� = � − �, g(t, �, �, �) = h(t, � − �) − h(t, � − �) + f (t, �, �, �).

From (36) we obtain

I�,�(r, �) = −erfc
√

wr(1− cos(� − �)) + ewr cos(�−�)Ī (wr, �, �, �). (39)

Therefore, from (10) we obtain (28) withU0
�,�(r, �) given in (31) andU1

�,�(r, �) = −2
√
2wrewr

Ī (wr, �, �, �).
Case4: � < � < � + �.
As in the preceding cases, we look for the polet1k or t2k that crosses the real axis when� runs from 0

to �. For that purpose we choose an integern satisfying:

�

2�
− 1< n <

�

2�
.

We distinguish two cases:
Case4.1: If Frac[ �

2�)� 1
2, just the polet1n = i(� − � − 2n�) crosses the real axis when� runs from 0

to �. Therefore, we split off the pole of the integrand att1n if we use (18) and (20):

� = � − � − 2n�, g(t, �, �, �) = −h(t, � − � − 2n�) + f (t, �, �, �).
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Using (36), we obtain that the integralI�,�(r, �) can be written as

I�,�(r, �) = ewr cos(�−�)[Ī (wr, �, �, �) + R(wr, �, �, �)], (40)

where

R(wr, �, �, �) ≡ − 1
2e

−wr cos(�−�−2n�) sign(� − � − 2n�)

× erfc
√

wr(1− cos(� − � − 2n�)). (41)

Therefore, from (11) we obtain (28) withU0
�,�(r, �) given in (32) and

U1
�,�(r, �) = −2

√
2wrewr [Ī (wr, �, �, �) + R(wr, �, �, �)].

Case4.2: If Frac( �
2�) > 1

2, just the polet2n+1 = i(� + � − 2(n + 1)�) crosses the real axis when� runs
from 0 to�. Therefore, we split off this pole from the integrand if we use (18) and (20):

� = � + � − 2(n + 1)�, g(t, �, �, �) = h(t, � + � − 2(n + 1)�) + f (t, �, �, �).

The application of (36) yields

I�,�(r, �) = ewr cos(�−�)[Ī (wr, �, �, �) + R(wr, �, �, �)], (42)

where

R(wr, �, �, �) ≡ − 1
2e

−wr cos(�+�−2(n+1)�) sign(� + � − 2(n + 1)�)

× erfc
√

wr(1− cos(� + � − 2(n + 1)�)). (43)

Therefore, from (11) we obtain (28) withU0
�,�(r, �) given in (32) and

U1
�,�(r, �) = −2

√
2wrewr [Ī (wr, �, �, �) + R(wr, �, �, �)].

Case5: �+���. In this case, instead ofI�,�(r, �), we have to analyzeI�,�−2�(r, �). Then, the poles of
the integrand of this integral are situated att1k = i(�−2�−�+2k�) andt2k = i(�−2�+�+2k�), k ∈ Z.
The saddle pointt =0 coalesce witht1k when� → �−2�+2k� or with t2k when� → −(�−2�+2k�).
We divide the study of this case in three subcases:� >2� − �, � = 2� − � and� <2� − �.
Case5.1:� + ��� and� >2� − �.
In this case just the polet20 = i(� − 2� + �) crosses the real axis when� runs from 0 to�. Therefore,

we split off this pole from the integrand if we use (18) and (20) with� replaced by� − 2�:

� = � − 2� + �, g(t, �, �, � − 2�) = h(t, � − 2� + �) + f (t, �, �, � − 2�).

Using (36) we get

I�,�−2�(r, �) = ewr cos(�−�)[Ī (wr, �, �, � − 2�) + R(wr, �, �, �)], (44)

where

R(wr, �, �, �) ≡ e−wr cos(�+�)

2
sign(� − 2� + �)erfc

√
wr(1− cos(� + �)). (45)
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Therefore, from (12) we obtain (28) withU0
�,�(r, �) given in (33) and

U1
�,�(r, �) = −2

√
2wrewr [Ī (wr, �, �, � − 2�) + R(wr, �, �, �)].

Case5.2:� + ��� and� <2� − �.
We look for the polet1k or t2k that crosses the real axis when� runs from 0 to�. For that purpose we

choose an integern satisfying:

2� − �

2�
− 1< n <

2� − �

2�
.

We distinguish two cases:
(a) If Frac[(2�−�)/2�]� 1

2, just the polet2n = i(�−2�+�+2n�) crosses the real axis when� changes
from 0 to�. Therefore, we split off this pole from the integrand if we use (18) and (20) with� replaced
by � − 2�:

� = � − 2� + � + 2n�, g(t, �, �, � − 2�) = h(t, � + � − 2� + 2n�) + f (t, �, �, � − 2�).

Using (36), we obtain that the integralI�,�−2�(r, �) reads

I�,�−2�(r, �) = ewr cos(�−�)[Ī (wr, �, �, � − 2�) + R(wr, �, �, �)], (46)

where

R(wr, �, �, �) ≡ − 1
2e

−wr cos(�+�+2n�) sign(� − 2� + � + 2n�)

× erfc
√

wr(1− cos(� + � + 2n�)). (47)

Therefore, from (12) we obtain (28) withU0
�,�(r, �) given in (33) and

U1
�,�(r, �) = −2

√
2wrewr [Ī (wr, �, �, � − 2�) + R(wr, �, �, �)].

(b) If Frac[(2� − �)/2�] > 1
2, just the polet1n+1= i(� −2� − � +2(n +1)�) crosses the real axis when

� runs from 0 to�. Therefore, we split off this pole from the integrand if we use (18) and (20) with�
replaced by� − 2�:

� = � − 2� − � + 2(n + 1)�, g(t, �, �, � − 2�)

= − h(t, � − 2� − � + 2(n + 1)�) + f (t, �, �, � − 2�).

Using the complementary error function representation (36), we obtain that the integralI�,�−2�(r, �)

equals

I�,�−2�(r, �) = ewr cos(�−�)[Ī (wr, �, �, � − 2�) + R(wr, �, �, �)], (48)

where

R(wr, �, �, �) ≡ − 1
2e

−wr cos(�−�+2(n+1)�) sign(� − 2� − � + 2(n + 1)�)

× erfc
√

wr(1− cos(� − � + 2(n + 1)�)). (49)

Therefore, from (12) we obtain (28) withU0
�,�(r, �) given in (33) and

U1
�,�(r, �) = −2

√
2wrewr [Ī (wr, �, �, � − 2�) + R(wr, �, �, �)].
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Case5.3:� + ��� and� = 2� − �.
In this case both poles,t11 = i(� − �) andt20 = i(� − �), touch the real axe when� runs from 0 to�.

Therefore, we split off these poles from the integrand if we use (18) and (20) with� replaced by� − 2�:

� = � − �, g(t, �, �, −�) = h(t, � − �) − h(t, � − �) + f (t, �, �, −�).

The application of the complementary error function representation (36) gives us that

I�,−�(r, �) = ewr cos(�−�)[Ī (wr, �, �, −�) + R(wr, �, �, −�)], (50)

where

R(wr, �, �, −�) ≡ −e−wr cos(�−�) sign(� − �)erfc
√

wr(1− cos(� − �)). (51)

Therefore, from (12) we obtain (28) withU0
�,�(r, �) given in (33) and

U1
�,�(r, �) = −2

√
2wrewr [Ī (wr, �, �, −�) + R(wr, �, �, −�)]. (52)

From Lemma 3, the function̄I (wr, �, �, �) defined in (19) has the asymptotic expansion (21) for
largew and boundedr �r0 >0. Therefore, formula (34) holds withRn(wr, �, �, �) = R̃n(wr, �, �, �) if
��� andRn(wr, �, �, �) = R̃n(wr, �, �, �) + R(wr, �, �, �) if � < �, with R̃n(wr, �, �, �) given in (27)
andR(wr, �, �, �) given in (41), (43), (45), (47), (49) or (51). Using the asymptotic behaviour of the
complementary error function[1, Eq. (7.1.23)]we see thatR(wr, �, �, �) = O(e−�wr) with � >0 for the
given valuesof� and� in (41), (43), (45), (47), (49) or (51). Therefore, using the bound (23) we obtain
(35). The exponentially small bound forR(wr, �, �, �) is included in the constantM in (35). �

Remark 3. It was pointed out in Remark 2 that the solutionU�,� of problem(P ) has the structure
given in (15). In cases 1,2 and 3 of the above theorem, the integralI�,� in the right-hand side of (15) is
asymptotically equivalent to the complementary error function appearing in the right-hand side of (37),
(38) and (39), respectively. Then, the basic approximantU0

�,� given in (29), (30) and (31) equals the
sum of the term��,� of Eq. (15) plus that complementary error function. In the cases 4 and 5 of the
preceding theorem, the integralI�,� (or the integralI�,�−2�) is asymptotically irrelevant. Then, the basic
approximantU0

�,� given in (32) and (33) is just the term��,� given in (15).

Remark 4. From (28), (34) and (35) we see thatU�,�(r, �) = U0
�,�(r, �) +O(

√
�) as� → 0+ away from

the pointr =0. Then, the first-order approximation to the solution of(P ) is a linear combination of error
functions and elementary functions. When−→v is inside the sector, the error function in (30) exhibits an
interior layer of widthO(

√
�) and parabolic level lines of equationr(1− cos(� − �))= constant. When−→v is parallel to one side of the sector, the error functions in (29) and (31) exhibit boundary layers of

widthO(
√

�) and the same level lines.When−→v is not in the sector, the exponential functions in (32) and
(33) exhibit boundary layers of widthO(�) (seeFig. 3).

4. Asymptotic expansion ofU�,�(r, �) near the discontinuity

The asymptotic expansion (34) breaks down whenr → 0+. Then, Theorem 1 does not offer a good
approximation. The asymptotic approximation ofU�,�(r, �) near the pointr = 0 requires a completely
different analysis which is given in the following theorem. Let us introduce first the following definition.
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Fig. 3. Graphs of the first-order approximation,U0
�,�(r, �), to the solution of problem(P ) for different values of� and� and

� = 0.1. The convection vector−→v “drags” the discontinuity of the boundary condition atr = 0 originating a parabolic layer of
sizeO(

√
�) along−→v if it points into the sector. If−→v points out of the sector, it originates boundary layers of sizeO(�) along the

outflow boundary of the sector. (a)� = �/4, � = �/3 (case 2); (b)� = 5�/4, � = 3�/2 (case 2); (c)� = 3�/4, � = 5�/12 (case
4); (d)� = 7�/4, � = �/4 (case 5).

Definition 3. We define the function

U3
�,�(r, �) ≡ �

wr






[ �+�
2� ]∑

k=1

ewr(1−cos(�+�−2k�)) −
[ �−�

2� ]∑
k=1

ewr(1−cos(�−�−2k�))

+ 1

2

(
��−�

2� ,[ �−�
2� ] − ��+�

2� ,[ �+�
2� ]

)
− ewrK(�, �, �)


 	(�,�+�)(�)

+



[ 2�+�−�
2� ]∑

k=1

ewr(1−cos(−�+�+2k�)) −
[ 2�−�−�

2� ]∑
k=0

ewr(1−cos(�+�+2k�)) + ewr

+1

2

(
� 2�−�−�

2� ,[ 2�−�−�
2� ] − � 2�+�−�

2� ,[ 2�+�−�
2� ]

)
− ewrK(�, �,2� − �)


 	[�+�,2�)(�)


 ,
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where

K(�, �, �) ≡




1 if

(
� − �

2�
,
� + �

2�

)
∩ N �= ∅,

1

2
if

� − �

2�
∈ N or

� + �

2�
∈ N,

0 if

(
� − �

2�
,
� + �

2�

)
∩ N = ∅.

Observe thatU3
�,�(r, �) = O(1) aswr → 0+.

Theorem 2.Writew ≡ 1/(2�).Then, for (r, �) ∈ �̄, � ∈ (0,2�) and� ∈ [0,2�), the solutionU�,�(r, �)

of problem(P ) reads

U�,�(r, �) = �

�
+ wr

�
ewr(cos(�−�)−1)U1

�,�(r, �), (53)

whereU1
�,�(r, �) = O(1) aswr → 0+.More precisely: U1

�,� = U2
�,� + U3

�,� withU3
�,� given in Definition

3 and, for n = 1,2,3, . . ., U2
�,�(r, �) has a convergent expansion in powers of wr:

U2
�,�(r, �) ≡ T0(�, �)

rw
[ewr(1−cos(�−�)) − 1]

−
n−1∑
k=1

(−1)k

k! [Tk(�, �) − Vk(�, �) log(rw)](rw)k−1 + Rn(wr, �, �, �). (54)

ThecoefficientsTk(�, �)andVk(�, �)are regular functionsof�and�and the remainder termRn(wr, �, �, �)

has a bound of the form

|Rn(wr, �, �, �)|� M

dnn! [n(2+ d) + | log(rw)|](rw)n−1 (55)

for some positive constants M and d.

Proof. Since the imaginary part of the integrand in (5) is an odd function oft and the real part is even,
removing the odd part and performing the change of variable cosht = u +1 in definition (5) ofI�,�(r, �)

we have

I�,�(r, �) = ewr(cos(�−�)−1)

�

∫ ∞

0
e−rwuf (u, �, �, �)du, (56)

with

f (u, �, �, �) ≡ 1√
u(u + 2)

sin(
�)[cosh(
t) cos(
�) − cos(
�)]
[cosh(
t) cos(
�) − cos(
�)]2 + sinh2(
t)sin2(
�)

andt = arccosh(u + 1), t >0.
Using the formula arccoshu = ln[u + √

u2 − 1], u�1 [1, Eq. (4.6.21)], we can write

f (u, �, �, �) = 1√
u(u + 2)

sin(
�)[c̃(u) cos(
�) − cos(
�)]
[c̃(u) cos(
�) − cos
�]2 + s̃2(u)sin2(
�)

,
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with

c̃(u) ≡ [1+ u + √
u(u + 2)]
 + [1+ u + √

u(u + 2)]−


2
,

s̃(u) ≡ [1+ u + √
u(u + 2)]
 − [1+ u + √

u(u + 2)]−


2
.

From this representation we see thatf (u, �, �, �) has an expansion in inverse powers ofu valid for each
� ∈ [0, �] and� ∈ [0,2�):

f (u, �, �, �) =
n−1∑
k=0

Vk(�, �)

u
+k+1 + fn(u, �, �),

wherefn(u, �, �, �) =O(u−
−n−1) asu → ∞ uniformly in� ∈ [0, �]. The coefficientsVk(�, �) are the
Taylor coefficients of the expansion of the functionu−
f (u−1, �, �, �) atu = 0 (V0 = 0). Applying[25,
Chapter 6, Theorem 13(ii)]to the integral in the right-hand side of (56) we obtain

I�,�(r, �) = ewr(cos(�−�)−1)

�

[
n−1∑
k=0

(−1)k

k! [Tk − Vk log(wr)](wr)k + wrRn(wr, �, �, �)

]
, (57)

with the following expressions for the coefficientsTk and the remainderRn(wr, �, �, �). CoefficientsTk

read

Tk ≡ Vk�(k + 1) + lim
s→k+1

{
M[f ; s] + Vk

s − k − 1

}
,

whereM[f ; s] denotes the Mellin transform off ats,
∫ ∞
0 us−1f (u, �, �)du, or its analytic continuation

as a function ofs. On the other hand, the remainderRn(wr, �, �, �) reads

Rn(wr, �, �, �) ≡ (wr)n−1
∫ ∞

0
fn,n(t)e−wrt dt, (58)

with

fn,n(t) ≡ (−1)n

(n − 1)!
∫ ∞

t

(u − t)n−1fn(u, �, �, �)du. (59)

In particular, the coefficientT0, which gives the dominant term of the expansion, reads

T0 = M[f ;1] =
∫ ∞

0
f (u, �, �)du

=
∫ ∞

0

sin(
�)[cosh(
t) cos(
�) − cos(
�)]dt

[cosh(
t) cos(
�) − cos(
�)]2 + sinh2(
t)sin2(
�)

= − 1



arctan

[
sin(
�) sinh(
t)

cos(
�) cosh(
t) − cos(
�)

]∞

0
.

From here we see that the value ofT0 depends on the relative value of� and�:
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Case1: If 0����.

T0 = −� + �

{1 if � > �,
1
2 if � = �,

0 if � < �.

Case2: � < � < � + �.

T0 = �K(�, �, �) − �.

Case3: � + ���.

T0 = �K(�, �,2� − �) − �.

Using these formulas, introducing (57) in (8)–(12) and rearranging terms we obtain (53).
Finally, we obtain the error bound (55) which shows that expansion (54) is not only asymptotic but

convergent. From the Taylor formula for the remainder,

fn(u, �, �, �) ≡ h(n)(�)

n!un+
+1

for certain� ∈ (0, u−1), u >0, whereh(u) ≡ u−
f (u−1, �, �, �). The singularities ofh(u) are away
from the positive real axis. Therefore, using the Cauchy formula for the derivativeh(n)(�), we see that

|fn(u, �, �, �)|� M

dnun+1+

, |fn(u, �, �, �)|� M

dn−1un+

, (60)

whereM is a bound forh(w) on the portion of the complexw-plane surrounding the positive real axis:
{w ∈ C, |w − u| < d, u ∈ R+} whered represents the distance from the closest of the singularities of
h(u) to the positive real axis.
Introducing these bounds in (59) we obtain[14, Eq. (2.23)],

|fn,n(t)|� M

dn(n − 1)!(1− d log t) ∀t ∈ [0,1]

and introducing the first bound of (60) in (59) we have[14, Eq. (2.24)],

|fn,n(t)|� M

n!dnt
∀t ∈ [0, ∞).

We divide the integral in the right-hand side of (58) at the pointt = 1 and use the first bound offn,n(t)

in the interval[0,1] and the second one in the interval[1, ∞). The bound (55) follows after simple
computations. �

Remark 5. From (53) we see that

U�,�(r, �) = �

�
+ O

(r

�

)
when

r

�
→ 0+.

The discontinuity of the inflow boundary condition is smoothed inside the domain by a linear function
of the polar angle�.
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5. Conclusions

The singularly perturbed convection–diffusion problem(P ) has been defined on a sector by means of
discontinuous Dirichlet boundary conditions with a discontinuity located on the corner of the domain.We
have obtained inProposition 2 an integral representation of the unique solution of problem(P ) susceptible
of an asymptotic analysis. Then, two complementary asymptotic expansions of the solution have been
obtained in Theorems 1 and 2. One expansion is valid in the singular limit� → 0+ and away from the
discontinuityr = 0. The other one is valid near the discontinuityr = 0 for ���0 >0.
These two asymptotic expansions are derived from two quite different asymptotic procedures. While

the asymptotic expansion in the singular limit is obtained from a classical uniformmethod, the asymptotic
expansion near the discontinuity is derived by means of a distributional approach. Two quite different
asymptotic principles match into the same problem.
The asymptotic expansion in the singular limit shows that the main contribution from the data’s dis-

continuities to the shape of the solution on the singular layers is contained in a certain combination of
error functions, exponential functions and step functions. This combination is necessary to approach the
behaviour of the solution on the interior layer of widthO(

√
�) or on the boundary layer of widthO(�).

On the other hand, the asymptotic expansion near the discontinuities shows that the discontinuity on the
boundary is smoothed inside the domain by means of a simply linear function of the polar angle.
We want to do emphasis on the simultaneous dependence of the solution of problem(P ) with the

singular parameter� and with the distance to the origin (the discontinuity point of the boundary data).
The solutionU�,� depends on� and the distancer to the origin through the quotientr/� (see Proposition
2). This is why the expansion for small� (largew) in Theorem 1 does not hold near the origin. And
conversely, the expansion near the origin (smallr) in Theorem 2 only holds when the distancer is smaller
than�.
We suspect that, as in the problem analyzed here, the error function plays a fundamental role in

the approximation of the solution of many singularly perturbed convection–diffusion problems with
discontinuities in the boundary conditions (problems defined over more general domains and by more
general coefficients). This will be the subject of further investigations. Then, the asymptotic expansions
of the solution of problem(P ) presented here may give a qualitative idea about the behaviour of the
solutions of more realistic convection–diffusion problems with discontinuous Dirichlet conditions. This
should help in the development of suitable numerical methods for those problems[24, p. 6]. For a similar
discussion with a parabolic problem see[4,16].
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