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Abstract

We consider a singularly perturbed convection—diffusion equatieny + v - Vu=0onan arbitrary sector
shaped domainQ = {(r, ¢)|r > 0,0 < ¢ <} beingr and ¢ polar coordinates and 9« < 2z. We consider for
this problem discontinuous Dirichlet boundary conditions at the corner of the se¢to®) = 0, u(r, x) = 1. An
asymptotic expansion of the solution is obtained from an integral representation in two limits: (a) when the singular
parametee — 0T (with fixed distance to the discontinuity point of the boundary condition) and (b) when that
distancer — 0T (with fixed¢). It is shown that the first term of the expansion at 0 contains an error function.
This term characterizes the effect of the discontinuity onctbhehaviour of the solution and its derivatives in the
boundary or internal layers. On the other hand, near discontinuity of the boundary conditibnthe solution
u(r, ¢) of the problem is approximated by a linear function of the polar apgle
© 2004 Elsevier B.V. All rights reserved.

MSC:35C20; 41A60

Keywords:Singular perturbation problem; Discontinuous boundary data; Asymptotic expansions; Error function

1. Introduction

Mathematical models that involve a combination of convective and diffusive processes are quite im-
portant in all of science, engineering and other fields where mathematical modeling is required. Very
often, the dimensionless parameter that measures the relative strength of the diffusion is very small. This
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implies that thin boundary and/or interior layers are present in the solution and singular perturbation
problems arise. This kind of problem appears, for example, in fluid or gas dyngrbj28], heat transfer

[2,3], theory of plates and shell$3], or magnetohydrodynamic floy8,19]. An extensive selection of
singularly perturbed convection—diffusion problems of the physics or engineering may be fqaayl in
pollutant dispersal in a river estuary, vorticity transport in the incompressible Navier—Stokes equations,
atmospheric pollution, groundwater transport, turbulence transport, etc. Besides the small perturbation
parameter, another source of singular behaviour for the solution are the (possible) discontinuities of the
boundary data: think for example in transportation of contaminant in a river with a source of contamination
located on a finite portion of the side of the water.

Mathematically speaking, a singularly perturbed convection—diffusion problem is a boundary value
problem of the second order in which the coefficients of the second-order derivatives are small. In this
paper, we focus our attention on two-dimensional linear convection—diffusion (elliptic) problems of the
form: find a functioru € %(Q) N 2%(Q) such that

—eAu + T -7u:h(x), x € Q C R?, (1)
u(@)og = f (), i e oo,

wheree is a small positive parameter; is the convection vectok(x) is a nonhomogeneous terfjs
a variable which lives i@, f (%) is the Dirichlet datum and/?(Q) is the set of functions with partial
derivatives up to order two defined in all points@f

The location and shape of the boundary layersi diepend, among other things, on the prescribed
velocity field v, on the shape of the bounda#® and on the existence of discontinuities fitx).

For example, regular boundary layers of sizg) appear on the outflow boundary, whereas parabolic
boundary layers of sizé(,/¢) appear along the characteristic boundaries. For more details on the shape
and nature of boundary layers see for exanfpte’,9,10]and references therein.

The knowledge of an asymptotic expansion for the solution may help in the development of a suitable
numerical method for these kind of problems because it gives the qualitative behaviour of the solution
[24, p. 6] An ¢-uniformly convergent method requires the analysis of uniform convergence and then,
accurate error bounds for the local error. The accuracy of these error bounds depends on the precision
in the approximation given by the first terms of the asymptotic expansion. The design of the numerical
technique is based on the exact integration of the first terms of the asymptotic expansion or of functions
which have a similar behaviour in the singular layer. Along this line, some references which propose
exponential fitting techniques or special meshes based on asymptotic expansipfjsarfll]. A
classical reference [46].

To get the exact solution of a boundary problem in terms of elementary functions is, in general, an
impossible mission. Then, an approximation of the solution adapted to the singular character of this
kind of problems (an asymptotic expansion) is of interest. There is an extensive literature devoted to the
construction of approximated solutions of singular perturbation problems based on matching of asymptotic
expansions. The book of IIfiL0] contains a quite exhaustive and general analysis for different equations
and domains. Other important references are for exafple] or [18]. However, a perturbative analysis
based on an expansion of the solution in powers of the perturbation parameter does not always work for
discontinuous Dirichlet boundary conditio[f2]. This is so, because the coefficients of the expansion
contain derivatives of the boundary condition, whereas the solution of the elliptic problem (1) is smooth
inside the domain.
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If the Dirichlet datumf (x) is continuous except at a finite number of points, where it presents jump
discontinuities, therf (¥) = g(X) + >_;_1ax©(X — Xx), whereg (%) is continuousg; € R and® denotes
the step function. We can decompose (1) into the problem:

—eAu+7T - Vu=h(), xeQcCR2 -

ux) oo =gKx), X € 00, 0
plusn problems of the form:

AU+ T -Vu=0, xeQcR? 2

Ux)| o= 0K — Xr), X €iQ. k

An asymptotic expansion fqrPp) may be obtained by the method of matching asymptotic expansions
[10]. An asymptotic expansion for the problerf®;) may be obtained from an exact representation of
the solution.

Some particular problems of foriiP;) have been already considered in the literature. For example,
Hedstrom and Osterheldl] studied the problernu —d,u =0 on the positive quarter plane with boundary
conditionsu(x, 0) = 0 andu(0, y) = 1. They obtained the first two terms of the asymptotic expansion
of ufor ¢ — 0" from a Fourier integral representationwfThe first term of this expansion is an error
function. A more detailed investigation has been developd@Qit an integral representation foris
obtained from the associated Helmholtz equation and a complete asymptotic expansionsof> 0™
is derived from this integral representation. The same equatien- d,u = 0, but in a generic sector,
is considered ifi21], where an integral representation fois obtained from the associated Helmholtz
equation. Different asymptotic expansions:as- 0" are obtained depending on the angle of the sector
and again the error function plays an important role in the analysis. A similar problem defined in the
interior of a circle is analyzed if22]. In all these problems, the approximation is not valid near the
discontinuities of the boundary condition.

In this paper we try to shed light on the influence that the discontinuities in the boundary conditions on
corner points of the domain have on the boundary or interior layers of the solution. We want to investigate
if, as in the examples mentioned, the solution is approximated by an error function. For this purpose we
analyze the problemcAu + U - Vu=0ona general sector with a discontinuous boundary condition
at the corner of the sector. We consider a general convection vectin [21], v = (0, 1)) because
the location and size of the singular layers depend also on the relative directignwith respect to
the sector: boundary layers appeariif points out of the sector, whereas interior layers are present if
o points into the sector. As in the references mentioned in the paragraph above, the starting point to
analyze the problem is an integral representation of the solution. We approximate the solution by deriving
asymptotic expansions from this integral, not only in the singular limit 0™, but also in the limit
r — 01, wherer represents the distance to the discontinuities. Then, we approximate the solution on the
whole domain, including the neighbourhood of the discontinuity poiat0. For the approximation in
the singular limit we use similar techniques to those usgaai

In Section 2 we obtain an integral representation for the solution. In Section 3 we derive an asymptotic
expansion of the solution far — 0% whereas in Section 4 we derive an asymptotic expansion for
r — 0%. Some comments and conclusions are postponed to Section 5.
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2. The problem and its exact solution

We use polar coordinates to describe an infinite seztiframplitudex in the plane with its corner point
removedx =r COS¢, y =r Sin ¢, (r, ¢) € Q = (0, 00) x [0, «]. Its interior set iF2 = (0, co) x (0, o)
(seeFig. 1(a)).

We consider a singularly perturbed convection—diffusion problem defined on this sector with an “infinite
source of contamination” located at one side of the sector:

U € (Q) N 2%(Q) and U bounded at =0,
{—SAUJF?V’U:o inQ, (2)
U(r,00=0andU(r,o) =1 forr>0,

where v = (cosf, sin p) is a constant vector,> 0 is a small parameter,<0f < 2z and O< « < 2x.
(Observe the discontinuous Dirichlet condition at the comer0.)

After the change of the unknown(r, ¢)=1—F (r, ¢) eXp(V -7 /(2¢)), Wwhere7 = (r cos ¢, r sin ¢),
problem (2) is transformed into the Yukawa equationfar, ¢):

F € 4(Q) N 2%(Q) and F bounded at =0,
{AF—w2F=O in Q 3)
F(r,0)=e W ¢Sk gand F(r,a0) =0 forr >0,

wherew = 1/(2¢).

We will obtain a solution of problem (3) and therefore of problem (2) in Proposition 2, but this solution
may not be unique unless we impose a convenient condition Upanp) (or uponF(r, ¢)) concerning
its growth at infinity. Then, we add a radiation condition to (2) and consider the following problem:

U € 4(Q) N 2%(Q) and U bounded at = 0,
AU+ -VU=0 in Q,
Ur,0)=0andU(r,a) =1 for r >0, (P)

ewr (1+cosf—¢))

Jur

In what follows, y 4 (x) represents the characteristic function of theAeindJ, ; is the Kronecker
delta:

U(r, ¢) =0¢ nip+o0 ( ) asr - oo and¢ € (0, o).

(x) = 1 ifxeA, 5= 1 ifa=b,
AN =010 it xgA, P10 ifa £b.

We have the following uniqueness result:

yll y#\

00.\ &

»
L

@ U=0 X U=0 x

Fig. 1. (@) Domain = (0, co) x [0, «] of problem(P). (b) Indented regio®* = (rg, o0) x (0, ) in Theorem 1.
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Proposition 1. Problem(P) has at most one solution

Proof. Suppose that/; and U, are two solutions of ). Then, the functiorG(r, ¢) = (U1i(r, ¢) —
Uo(r, ))e~vr 0F=9) verifies:

G € 4(Q) N 2%(Q) and G bounded at =0,
AG —w?G =0 in Q
G@r,00=0andG(r,a) =0 forr >0, (4)
G(r, ¢)=0<%) asr »> oo and¢ € (0, o).
Consider the following auxiliary function defined @nand at- = 0:
G, o) .
Va(r, d) = { H,(wr) "; r#0 Hy(wr) = Ko(wr) + Io(wr) +a,
0 if r=0,

whereKg andIp are modified Bessel functions of order zero and a positive constant. The function
H,(wr) is positive forwr > 0, of the order’(e*” //wr) aswr — oo andO(log(wr)) aswr — 01,
Egs. (9.7.1) and (9.6.13)loreover,H, (wr) € 4(Q) N Z?(Q) and satisfies the equatiohH, — w2 H,, +
aw?=0inQ[1, Eq. (9.6.1)] Therefore, the auxiliary functioki, is continuous oM and atr = 0 and
verifies:

2 aw? .
AVa+EV’Ha.V’Va=EVa in Q.
Va(r,0) =V,(r,a) =0 Vr>0,

lim, oVa(r, @) =lim, oo Va(r,§) =0 V¢ € [0, «].

Consider the open finite sector of radRs2g = (0, R) x (0, o). At points(r, ¢) € Qg whereV V,=0
andV, # 0, we have that, - AV, > 0. Therefore}, has not positive relative maximums neither negative
relative minimums img. Then Sup, |V, <Supg, [ Val-

Using that lim_ »V,(, ¢) = 0 we have thatyé > 0, there is aR > 0 such that|V,(R, ¢)| <.
On the other handV,(r, 0) = V,(r,2) = 0Vr >0 and lim_oV,(r, ) = 0 V¢ € [0, «]. Therefore,
[Va(r, $)| <5 Vo >0 and every(r, ¢) € Qg. Taking the limitd — 0 (R — oo) we have tha¥, = 0 on
Q. ThereforeG =0 andUy = U, onQ. [

Remark 1. Only for ¢ = g + =, the radiation condition given in the last line @) specifies a precise

limit of U atr =o0: lim, U@, B+ ) =1and lim_ U(r, B — ) = 0. For the remaining values

of ¢ € (0, «), that radiation condition allows an exponential growingbét r = co. That is, to have
uniqueness in problem (2), we require to specify a precise radiation condition in the ditgetigrt- ©

or ¢ = p — monly if one of these directions is contained in the sector. In other directions of the sector we
only require a not too wild growing df. A geometrical interpretation of this is the following: uniqueness
requires folU to have a defined value at the inflow boundary. Uniqueness requires the convection vector
U to drag a concrete boundary value insidleWhen the inflow boundary has not a defined boundary
condition, the vectorv does not drag any specific value insideand uniqueness is not assured (see
Fig. 2.
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Outflow boundary

(©) (d)

Fig. 2. (a)—(b) The inflow boundary is contained in the union of the boundary §ire® and¢ = « if f + n ¢ (0, »). (c)—(d)

The inflow boundary is not contained in the union of those boundary lines and “contains a portion of arc at the infinity” if

p+me0,a)orf—mne (0.

In order to construct the unique solution of probléR) we will need the following function defined
by means of an integral:

Definition 1. We define the function

g cosf~9) /°° _ur cosh Sin(ug) dr, (5)

24 —o0 ¢ cosHu(t —ip)] — cogue)

whereu = n/a. It must be implicitly understood in the above formula that, wideg +8 + 2k« with
k € 7, the following Cauchy principal value must be taken on the integral:

awr coS iFf—2ka)

I:x,ﬁ(rv ¢) =

Lp(r, £ + 2ko) = +

20 )
) —& o] Sin(uﬁ)e—wr cosnt
X e {/oo +/g } costutt — )] — cosup) ©)

Lemma 1. The function/, g(r, ¢) is well-defined for anyr, ¢) € Q, p € [0, 2n) ando € (0, 27).

Proof. If ¢ # +p+ 2ka, k € Z, the integral in (5) is convergent because the integrand is a continuous

function ofz Vr € R and it is exponentially decaying at t+oo.
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If ¢ =+p+ 2ka, k € 7, the integrand in (5) has a polerat 0 which is removed by taking the Cauchy
principal value as given in (6). Indeed,

—¢ e—wr cosht
lim { / / } dr
e—>0t ¢ ) cosHu(t —ip)] — coqup)

_ / @~ wr cosht cogup)[coshiut) — 1]
oo co2(up)[coshur) — 112 + S|n2(u/3)smhz(ut)

This last integral is convergent because the integrand is a continuous functioft &f R\{0} with a
removable singularity at= 0 and it is exponentially decaying a& +oo. O

In the following lemma, we construct an explicit solution of problem (3) as a generalization of the
solution derived if21] for § = =/2. From this solution we will obtain the unique solution of problem
(P) in Proposition 2.

Lemma 2. Letu = =/a. The function

[ e wr cos()’ o0
Fir,g)=1 1 ooHE s sin(ug) . @)
20‘/—00+i[fe coshu(r —iB)] — coq o) dr if ¢ €(0,0]

is a solution of problen(3).

Proof. For¢ # 0 the integrand in the second line of (7) is a continuous functidraaofl exponentially
decaying at ==oc for r >0 and¢ € (0, «]. Therefore F (r, ¢) is well defined o2 and bounded at=0.
On the other hand, using uniform convergence, we sed-timtwice differentiable in0, co) x (0, ).
Moreover, the function

1 sin(u¢)
20.costu(t —ip)] — cos(ud)
satisfies the equation

W, ¢) =

2 2
oaow oW
— 4+ —5 =0, VieCandg¢ € (0, x).
at2+6¢2 ¢ (0, )

Using these facts, it can be easily shown that the funckion ¢) verifies the equation F — w?F = 0
in Q. The conditionF (r, «) = 0 is satisfied trivially and

lim F(r, ¢) = lim i /OO g wr cosh+if) Sin(ue)
$—0 ¢—0 20, —00 COS}'(/J[) — codug)
1 /OO g wr cosp sin(u¢)

o0

T 020 J_ coshut) — cogug)
sin(ug) [ [e™™r coshz+if) _ g—wr cosﬂ]

lim dr
+ ¢—0 20 oo coshiur) — coS(ue)
— lim e~ *r cosp%* — ¢ 4L Q=g W Cosp, O

¢—0 o
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In the following proposition we obtain the explicit solution of problém) in a more tractable form
than in Lemma 2. In what follows, empty sums must be understood as zero.

Proposition 2. Letw = 1/(2¢). Then for (r, ¢) € Q andp € [0, 2n), the solutionU, g(r, ¢) of problem
(P)is:

1. 1fg=0,
U\’Z,O(rv (;b) = 1 - I(X,O(rv (;b)’ (8)
2. If0<B<aq,
Usp(r, §) = 15,0 () + 309.5 — Lup(r. d): 9)
3. fg=xq,
Uoc,oc(", ¢)=— oc,oc(", ?); (10)
4. fa<f<a+m,
(221 1271
U, ﬁ(r’ ¢) _ qwr cof—¢) Z e wr cogf+o¢p—2ka) Z g wr co9 ff—¢p—2ka)
k=1 k=1
+ }e_w’ (5; -1 — Of+d p ) — (r, ); (11)
2 /2*1(117’[%1 %,[%J O(,[g ’ ’
5. If o +n<B,
[M] [M]
2q 20
U, ﬁ(’,’ o) = wr oY f—¢) Z e wr COS(—p+f+2ka) _ Z e wr coS p+f+2kar)
k=1 k=0
1 —wr
+§e (5 2n—¢p—p [Zn—(/)—[f] - 52n+d)—/3 [2n+(/)—[3]) + 1 - IO(,/}—ZTE("’ (l))’ (12)
20 20 20 20

wherel, 4(r, ¢) is given in(5).

Proof. For convenience, we consider in this proof the angle

B if 0<p<m,
p—2n if t<f<2n

p (13)

and observe thatr < [K 7. For reasons that will be clear in a moment, in principle, we restrict ourselves
to—n/2<f<mn/2.

Asolution of (3) has justbeen obtained inLemma 2. Then, the funtligir, ¢) = 1—e*” COSB=9) F(r, ¢),
with F (r, ¢) given in (7) is a solution of (2).
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The poles of the integrand in (7) are located at the pofnts i (f — ¢ + 2ka) andz? = i (B + ¢ + 2ka),

k € 7 and the real part of the exponent readsw cosh(%r) cog3r) with |3¢| < /2 if |5¢|<|B| and
—n/2 < B <mn/2. We can use the Cauchy Residue Theorem for shifting the integration contour in the
integral F (r, ¢) to the straight linestr = 0. Therefore, we can write:

F(r, ¢) = i /oo g—wr cosht sin(ug) a
) 20 J o cosHu(t —iB)] — coqug)

— 2nisign(B) Y~ Rede™ Wz, ¢); a),

aceR

whereR is the set of the poles d¥ (z, ¢) located between the lin€s = 0 andJr = i. Therefore, we
can write finally

U p(r. ) =1~ 1 5(r, ¢) + 2nisign(Be” -9 3™ Rege " Ny (1, ¢); a). (14)

acR

where sigii0) = 0 (in what follows we will use this convention). Formulas (8)—(12)fet/2 < < n/2
(0<B<m/20r3r/2 < < 2r) follow from counting the poles iR. We distinguish several cases:

Casel: g=0.

R = (in this case it is not necessary to shift the integration contoDr te 0 because we are already
on it).

Case2: 0< f < 5 anda > f.

R={1}=i(B—¢)}if p<pandR =0 if o> p.

Case3: 0< f < 5 anda = f.

R={g=iF-¢)}

Case4: 0< f < 5 anda < f.

R= {tkl:i(ﬁ—queroc),k:O,l,...,|:ﬁ_¢“
20
U{t,f:i(f>’+¢+2koc),k:1,2,...,[ﬂ;d):”.

Case5.1:—3 < f<0andx> — .
R={12=i(B+ ¢)}if ¢< — pandR =@ if ¢ > — p.
Case5.2:—% < f<0andx < — .

R= {tkl:i([?—¢+2koc),k:|:u:|...,—l}

20

ulz,?:i(ia+¢+2ka),k=[ﬁ;‘f’],..,o].




10 J.L. Lépez, E. Pérez Sinusia / Journal of Computational and Applied Mathematics 181 (2005) 1-23

Caseb5.3: —3 < f <0 andu = —§.

R=1{f =i+ ®)).

Atthis moment, formulas (8)—(12) are a solution of (2)fo1/2 < f < 7/2 (0< < n/20r 3t/2 < f§ < 2n).
But it is routine to check that they are also a solution of (2) for the range of valugsppearing in
the statement of the proposition. From Theorem 1 below we havdlthat, ¢) satisfies the radiation
condition given in the last line afP). Therefore, it is the unique solution of problegm). O

Remark 2. Observe that the general structure of the solution(r, ¢) of problem(P) given in Propo-
sition 2 can be decomposed as

Iy p—2n if o+ n<p<2n,

where the functiorg,, s denotes a linear combination of characteristic functions, Kronecker deltas and
exponential functions as it is detailed in the enunciate of Proposition 2. The furgtios defined in
(5).

The solution of(P) cannot be written in terms of known functions. But, for> 0™ andr away
from O, we can approximaté, s(r, ¢) by an error function and elementary functions plus an asymptotic
expansion in powers af Forr — 0" (ande>¢g > 0), we can approximat&, s(r, ¢) by an asymptotic
expansion in powers of This is the subject of the two following sections.

3. Asymptotic expansion ofU,,g(r, ¢) in the singular limit
In this section we denote hy* the sector shaped domain indented at the poiatO (seeFig. 1(b)):
Q* = (rp, 00) x (0, a), ro > 0.

The proof of the main theorem of this section uses the following definition and lemma.

Definition 2. We define the functions
Sin(u¢) n

$10:9:2 P = Blcositut — 1) — ot " (19
and
h(t,0) = ! @an
"7 4nisinh 3t —i0)
whered is not an independent variable but a functionppf and :
B — sign(p) <¢> 2 “’;D if Frac<'2ﬂ) < %
0($, . p) = 1 B\ 1 (18)
B+ sign(p) <q’) — 20 (L—J + 1)) if Frac(—) > —,
20 20 2
with sign(0) = 1. We define also
I(x,$,0,p) = /Oo e N f(t, p, 0, By, (19)
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with

20
x [h(t, 0(¢, o, B)) — [0p,0 + 0p,0 + 0p,2n—a(t, —0(, o, B))]. (20)

(Observe thag(z, ¢, «, p) is part of the integrand in (5)).

[ ¢, p) =g, ¢, 0, /3)+S|gn(ﬂ)s|gn(_ —Frac(lﬂl))

Lemma 3. Let(r, ¢) € Q*, p € [0, 2n), & € (0, 2n). Then the function/ (x, ¢, o, f) given in Definition
2 has the following asymptotic expansion for large positive x

n—1 1
I(x ¢ O( ﬂ) 2\/— {]{2(:) k'(zx)k (O’ ¢, O(, ﬂ)+Rn(x» d)7 OC, ﬂ) ’ (21)
where
T, ¢,a, p)= J%f(z arcsinhu, ¢, a, f) (22)

and7T® (u, ¢, «, B) is the kth derivative of the functidh(u, ¢, «, f) with respect to u
The remaindeRrR, (x, ¢, «, f) satisfies a bound of the form
rn+1/2)

R, 6,0 <M= o

(23)

for some positive constanig and d

Proof. It is easy to check that the imaginary part of the functjm, ¢, «, f) given in (20) is an odd
function oft whereas the real part is even. Then, removing the odd pafto, «, ) and performing
the change of variable sity2) = u in (19) we obtain:

o0
I(x, .0, p) = e_x/ e 2T (u, ¢, o, ) du, (24)
0
with T'(u, ¢, o, f) given in (22) or, more explicitly:

2 sin(u¢)lc(u) coSu(B — 2m)) — coud)1(1 + u?)~H?
o [e(u) coSu(p — 2m)) — cosud)1? + s2(u)Sin?(u(p — 2m))

1 |ﬂ|)> (14 00+ 0p0+0p2:—o) SINO
+ Si sign| = — Frac . : - ,
ondsie ( (Za 2n u? 4 sirf 0

T(u,,ap)=

0 given in (18) and

[+ Va2 F A + [+ a7 12
2 b
[u+ Vu? + 17 — [u+ Vu2 + 1172
5 .

In these formulas we have used the equality arcsighin[u + +/u2 + 1] valid foru >1[1, Eq. (4.6.20)]

c(u) =

s(u) =
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The functionT (u, ¢, o, f) has a Taylor expansion at= 0 for each¢ € (0,%), p € [0, 2r) and
o € (0, 2n):

n—1

T, ¢, 0 )=

k=0

T(k)(o’ ()b’ o, :B) Mk

X + Tn(ua ({b’ o, ﬁ)’ (25)

whereT ®¥ means théth derivative of the functiof (u, ¢, «, ) with respect tarand7}, (u, ¢, «, p) is the
Taylor remainder. The points of singularity 8fu, ¢, «, ) are away from the positive real axis. Using
the Cauchy formula for the remaindgy(u, ¢, «, ), we see that

M}’l

oS (26)

T (u, ¢, 2, B <M

whereM is a bound fof' (u, ¢, o, f) on the portion of the complex-plane surrounding the positive real
axis:{w € C, |w — u| <d, u € R} andd represents the distance from the closest of the singularities of
T (u, ¢, o, p) to the positive real axis. Introducing the expansion (25) in (24) we obtairf that, o, f)

has expansion (21) with

Ro(x, ¢, o, f) = 2«/5/00 e 2T (u, ¢, a, ) du. (27)
0

Introducing (26) in (27) we obtain (23).0

Theorem 1. Letw = 1/(2¢), (r, ¢) € Q%, f € [0, 2n) ando € (0, 2r). Then the solutionU, z(r, ¢) of
problem(P) given in Propositior2 reads

gwr (Cosf—p)—1)

Un p(r. ¢) = UD y(r. d) + e Uy 4(r. ¢). (28)
where
1. Ifp=0:

U2o(r, §) = 1 — erfc/wr (1 — cos ¢). (29)

2. f0<pB<ua

U2 4(r. §) = 105.00($) + 30,5 + 3 SIGN(B — p)erfcy/wr (1 — cosp — ¢)). (30)

. Ifp=uw

U2, (r, ¢) = erfc/wr (1 — cosx — ). (31)
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4 fa<f<oa+m

[ /3;;(/’ ] [ ﬂz_;/} ]
UOﬁ(r ¢) _ qwr cosf—¢) Z e wr cogf+o¢p—2ka) Z e wr co9f—¢p—2ka)
o, )
k=1 k=1
+}e_w’ (5 3 —py — Op 3 ) (32)
2 et — o) (-
5. fa+n<p:
2=y (=5~
Ugﬂ(l’, ¢) — e coqff—¢) Z e wr coS—op+f+2ka) Z g wr cop+f+2ka)
k=1 k=0
1 —wr
+—-e (52n—¢—/3 2n—¢—fq — O2utd—f 2n+d—p ) + 1. (33)
2 2 | 20 ] 2% il 20 ]

The functior‘Ual ﬁ(r, $) has an asymptotic expansion in powerswofl:

n—1

rk+1/2) T, ¢, o, p)
Ul k) = + RI’L k) ’ ’ ’ 34
2 ®) ,;o . orF (wr, ¢, 2 f) (34)
where the coefficients ®) (0, ¢, «, p) are given in Lemma& and are regular functions of r ang for
(r, ) € Q*.
The remainderR,, (wr, ¢, «, f) satisfies a bound of the form

r(n+1/2)
n!wdr)"’
where M and d are positive constants

|Rn(wr, ¢, o, p)|<M (35)

Proof. For largew and fixedr, the asymptotic features of the integéalz(r, ¢) defined in (5) are: (i)
there is a saddle point at= 0. (ii) The poles are situated ét: i(f— ¢+ 2ko) andtk2 =i(f+ ¢+ 2ka),
k € Z. Then, the saddle point coalesce withwhen¢ — f + 2ka or with t2 when¢ — —(B + 2ko).
Uniform asymptotic expansion of this kind of integrals are obtained by using the error function as the
basic approximan25, Chapter 7, Section 2T herefore, we need to identify the poles in the integrand
of I, s(r, ¢) which are closest to the point= 0 (to the real axis). We distinguish several cases:
Casel: g=0.
In this case two polesg =—i¢ andtg = i¢, touch the real axis whefi runs from 0 tox. Therefore,
we split off both poles from the integrand bfo(r, ¢) if we use (18) and (20):

Qz—d), g(t,¢,a,0)=h(t,¢)—h(t,—¢)+f(t,¢,d,0),

where the functiong, ¢ andh are given in Definition 2.
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Using the complementary error function representatij

. 1 [ d
e’ Coso‘erfc( 2r sin f) = —/ e’ Cosm_l—t,, 0<a<2m, (36)
2 2 J_ oo sinh3(t — o)
we obtain that the integrdl, o(r, ¢) reads
L.o(r, ¢) = erfcy/wr (1 — cos¢) + e =) [(wr, ¢, a,0), (37)

wherel (wr, ¢, o, 0) is defined in (19).

Therefore, from (8) we obtain (28) with’?(r. ¢) given in (29) andU} o(r, ¢) = —2v2wre"
I(wr, ¢, ,0).

Case2: 0< f<o.

In this case, the poI% =i(B — ¢) is the only one which crosses the real axis whenins from 0 to
«. Therefore, we split off the pole of the integrand(,%\tf we use (18) and (20):

Bzﬁ_¢7 g(tv(bvavﬂ):_h(tvﬁ_¢)+f(tv¢9oc9ﬂ)'
Using (36) we obtain that the integrgl 4(r, ¢) equals

L p(r, §) = —3 Sign(B — p)erfe/wr (1 — cosf — ) + € =D I(wr, ¢, a, p). (38)

Therefore, from (9) we obtain (28) wil]?igﬁ(r, $) givenin (30) and/iﬁ(r, P)=—22wre" I (wr, $, o, p).
Case3d: f=a.
In this case both polesé =i(ax— ¢) anth1 =i(¢ — ), touch the real axis whegh runs from 0 tox.
Therefore, we split off these two poles from the integrand if we use (18) and (20):

O=o—¢, glt,d,o,0)=h(t,¢—0o)—h(t,o—a¢)+ f(t, ), a).

From (36) we obtain

L.o(r, ¢) = —erfc/wr(1 — coso — ¢)) + € =D [(wr, ¢, «, o). (39)

Therefore, from (10) we obtain (28) WitU(ga(r, ¢) given in (31) andUa%a(r, ¢) = =2+ 2wre*”
I(wr, o, a, o).

Cased:a<f<a+m.

As in the preceding cases, we look for the p&;}ir tkz that crosses the real axis wheémuns from O
to «. For that purpose we choose an integeatisfying:

p p

— —1l<n<—

20 20

We distinguish two cases:
Case4.1: If Fraq%) < % just the pole,} =i(p — ¢ — 2na) crosses the real axis whenruns from 0
to «.. Therefore, we split off the pole of the integrand atf we use (18) and (20):

9:[3—¢)—2noc, g(t’d)va’ﬂ):_h(t’ﬁ_¢_2na)+f(t7¢v(x’ﬁ)'
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Using (36), we obtain that the integrBl s(r, ¢) can be written as

Lp(r, §) = €7 =D [T (wr, ¢, a, p) + R(wr, §, o, B)1. (40)
where
R(wr, ¢, 0, p) = — & " ON=0=2 sign(p — ¢ — 2n0))
X erfc\/wr(l — co9f — ¢ — 2na)). (41)

Therefore, from (11) we obtain (28) Wlmoﬁ(r ¢) given in (32) and
Uy y(r. ¢) = —2v/2wre" [I(wr, ¢, «. f) + R(wr, ¢, o, B)].

Cased.2: If Frac(%) > % just the poler,f+1 =i(f+ ¢ — 2(n + 1)) crosses the real axis wheérruns
from O too. Therefore, we split off this pole from the integrand if we use (18) and (20):

O0=f+¢—2n+ Do, g, ¢,a,p)=hE, B+ ¢—2n+ Do)+ f(t, ¢, ).
The application of (36) yields

Lp(r, ) =€ VDT (wr, ¢, . p) + R(wr, ¢, . P, (42)
where
R(wr, ¢, o, p) = — Je 7 T2 DD sign(p 4 ¢ — 2(n + D)
X erfc\/wr(l —CcoSf+ ¢ — 2(n + Da)). (43)

Therefore, from (11) we obtain (28) Wimg 5(r @) given in (32) and

Ualﬁ(r, ) = —2v2wre” [I(wr, ¢, o, ) + R(wr, ¢, o, p)].

Caseb: a+n< f. In this case, instead @f 4(r, ¢), we have to analyzz‘-;C p—2:(r, ). Then, the poles of
the integrand of this integral are sﬂuatedjai: I(f—2rn— ¢+ 2ka) andtk =i(f—2n+ ¢+ 2ka), k € Z.
The saddle point= 0 coalesce W|t|7|l Whenqs — B — 2n+ 2k« Or with tk wheng — —(f — 2n+ 2ko).
We divide the study of this case in three subcases2n — B, o = 2n — pando < 2 — B.

Caseb.1l:a+ n<fanda > 21 — .

In this case just the pohé =i(p — 2n + ¢) crosses the real axis wherruns from 0 tox. Therefore,
we split off this pole from the integrand if we use (18) and (20) vgitieplaced bys — 2x:

O0=B—2rn+¢, g, ¢,0,p—2n)=h(t,p—2n+ ¢)+ f(t, ¢, o, p— 2n).
Using (36) we get

Lyp2n(r. ) = € V=D (wr, ¢, o, p— 21) + R(wr, ¢, a, P)], (44)
where
e wr codf+¢)
R(wr, ¢, o, p) = sign(p — 2n + ¢)erfc/wr(1 — cosf + ¢)). (45)

2
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Therefore, from (12) we obtain (28) Wimg 5 @) given in (33) and

Uy y(r. ¢) = —2/2wre” [I(wr., ¢, o« p — 2m) + R(wr, ¢, 2, B)].

Caseb.2:a0+ n<fanda < 21 — .
We look for the poler,;L or tkz that crosses the real axis wherruns from O tox. For that purpose we
choose an integer satisfying:
2n—p 2n—f

-1
20 =n= 20

We distinguish two cases:

(@) If Frad(2r — ) /24] < % justthe pole,f =i(f—2n+ ¢+ 2na) crosses the real axis wheérchanges
from 0 toa. Therefore, we split off this pole from the integrand if we use (18) and (20) fvitplaced
by g — 2n:

O0=p—2n+ ¢+ 2na, g, o,o,pf—2n)=ht,f+ ¢—2rn+ 2na)+ f(t, ¢, o, f— 2n).
Using (36), we obtain that the integrBl ;> (r, ¢) reads

Ly p—2n(r, ¢) = €7 V=D [T (wr, ¢, o, p— 21) + R(wr, ¢, . P)], (46)
where
R(wr, ¢, o, f) = — Fe7v7 COMFTIT210) gignp — 2n + ¢ + 2n0)
X erfc\/wr(l — co9f + ¢ + 2na)). (47)

Therefore, from (12) we obtain (28) wiiti? ﬁ(r ¢) given in (33) and

Uy 4(r. ¢) = —2/2wre"" [I(wr., ¢, . p — 2m) + R(wr, ¢, 2. B)].

(b) If Frad 2z — B)/24] > 2 , just the poI 1 =1(f—2rn— ¢+ 2(n + Do) crosses the real axis when
¢ runs from 0 tox. Therefore, we split off thls pole from the integrand if we use (18) and (20) fvith
replaced bys — 2x:

0=p—2r—¢+2(n+ Da, gt, ¢, o, p — 27)
=—h(t,f—2n—dp+2(n+ Do)+ f(t, ¢, f— 2n).

Using the complementary error function representation (36), we obtain that the intggral.(r, ¢)
equals

Lyp2n(r. ) = €7 VDI (wr, ¢, o, f— 21) + R(wr, ¢, o, P)], (48)
where
R(wr, ¢, o, f) = — Se7vr COM=+204 D0 sign(f — 27 — ¢ + 2(n + 1)ar)
X erfc\/wr(l —co9ff — ¢ + 2(n + Da)). (49)

Therefore, from (12) we obtain (28) witti° IGED) given in (33) and

Uy y(r, ) = —2v/2wre” (I (wr, ¢, @, f— 2m) + R(wr, p. . )].
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Caseb.3:a+ n<fando = 2r — B.
In this case both polesl1 =i(e— ¢) andtg =i(¢ — a), touch the real axe whefi runs from 0 too.
Therefore, we split off these poles from the integrand if we use (18) and (20Bwéplaced bys —

0:¢ -, g(tv (Z)7 o, _“) :h(l9 (l') - O{) _h(t’ o — ()b) + f(tv ¢a o, _O()
The application of the complementary error function representation (36) gives us that

L —o(r, ¢) = €7 =D [T(wr, ¢, 0, —2) + R(wr, ¢, o, —0)], (50)
where
R(wr, ¢, 0, —a) = —e~ W 0= gign(y — ¢>)erfc\/wr(1 — coqa — ¢)). (51)

Therefore, from (12) we obtain (28) wrlbigﬂ(r, ¢) given in (33) and

UL, ) = —2V2wre" [T (wr, ¢, 0, —) + R(wr, , 2, —2)]. (52)

From Lemma 3, the functiod(wr, ¢, o, f) defined in (19) has the asymptotic expansion (21) for
largew and bounded >rg > 0. Therefore, formula (34) holds witR, (wr, ¢, «, f) = I?,,(wr, ¢, o, ) if
a>pandR,(wr, ¢, o, B) = R, (wr, ¢, o, B) + R(wr, ¢, o, B) if o < B, with R, (wr, ¢, o, f) given in (27)
andR(wr, ¢, o, f) given in (41), (43), (45), (47), (49) or (51). Using the asymptotic behaviour of the
complementary error functidd, Eq. (7.1.23)we see thaR (wr, ¢, o, f) = O(e~™") with > 0 for the
given valuesoft and« in (41), (43), (45), (47), (49) or (51). Therefore, using the bound (23) we obtain
(35). The exponentially small bound f&(wr, ¢, «, p) is included in the constaM in (35). O

Remark 3. It was pointed out in Remark 2 that the solutioi g of problem (P) has the structure
given in (15). In cases 1,2 and 3 of the above theorem, the intéggah the right-hand side of (15) is
asymptotically equivalent to the complementary error function appearing in the right-hand side of (37),
(38) and (39), respectively. Then, the basic approxmlaﬁ given in (29), (30) and (31) equals the
sum of the tern&, ; of Eq. (15) plus that complementary error function. In the cases 4 and 5 of the
preceding theorem, the integigls (or the integrall, s_»,) is asymptotically irrelevant. Then, the basic
approxmanUOﬂ given in (32) and (33) is just the terf, ; given in (15).

Remark 4. From (28), (34) and (35) we see that 4(r, ¢) = U° 51 ¢) + 0(e) ase — 0T away from

the pointr = 0. Then, the first-order approximation to the solutlombj is a linear combination of error
functions and elementary functions. Whenis inside the sector, the error function in (30) exhibits an
interior layer of width@(,/¢) and parabolic level lines of equatiel — cog — ¢))= constant. When

o is parallel to one side of the sector, the error functions in (29) and (31) exhibit boundary layers of
width ¢(/¢) and the same level lines. Whah is not in the sector, the exponential functions in (32) and
(33) exhibit boundary layers of widifi(c) (seeFig. 3).

4. Asymptotic expansion ofU, g(r, ¢) near the discontinuity

The asymptotic expansion (34) breaks down when 0'. Then, Theorem 1 does not offer a good
approximation. The asymptotic approximationldf s(r, ¢) near the point = 0 requires a completely
different analysis which is given in the following theorem. Let us introduce first the following definition.
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—
\'

(b)

(© )

Fig. 3. Graphs of the first-order approximatidn?ﬁ(r, ¢), to the solution of problendP) for different values ot and g and
¢=0.1. The convection vector” “drags” the discontinuity of the boundary conditionra 0 originating a parabolic layer of
size((/e) along ™ if it points into the sector. If” points out of the sector, it originates boundary layers of siz¢ along the
outflow boundary of the sector. (A)= =/4, o = /3 (case 2); (b = 5r/4, o« = 3n/2 (case 2); (P = 3rn/4, o = 5n/12 (case
4); (d)p=T7n/4, o« = /4 (case 5).

Definition 3. We define the function

) (52 (£
Ua?,/)’(r’ ¢) = E Z ewr(lfcos([i+¢72koc)) _ Z ewr(lfcos(ﬁfd)kaoc))
k=1 k=1

1
5 (On ey = 9030 150)) = €K (9.2 B) | Liaaim )

27I+¢ /i [ 27t72¢7ﬁ]
Z ewr(l cog—p+p+2ka)) Z eu)r(l—COS(qb-i-ﬁ—I—Zkac)) +ewr
k=0

'_\

E <52n o—p [27'5 </) ﬂ] - 527t+4)— ’[2n+¢ ﬁ]) - er(¢a o, 2n — IB) X[a—i—n,Zn)(ﬁ) ’
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where
1 n‘(2 )HN;&(A
Kpup={2 it - eNorB Pen,
B—¢ B+¢
0 (20(’ 20 )HN .

Observe thaU3ﬂ(r $) = 0(1) aswr — 07.

Theorem 2. Writew = 1/(2¢). Thenfor (r, ¢) € Q,« € (0, 2n) andp € [0, 2n), the solutionU,, s(r, ¢)
of problem(P) reads

¢ wr 4
Un p(r, ) = - + ?ewr(cos(/)’ ®) l)Uo:cL,/?(r’ b), (53)

whereU} ,(r, ¢) = 0(1) aswr — O*. More preciselyU, , = UZ ; + U2 ; with U} ; given in Definition
3andforn=1223, ..., Uiﬁ(r, ¢) has a convergent expansion in powers of wr

100, B) vt cox
U2(r, ) = 2 D gora—cosson _ g

1k
Z( )[Tk«p B) = Vi, B)log(rw)]rw)*~t + Ry (wr, ¢, %, ). (54)

The coefficient®, (¢, f) andVy (¢, B) are regular functions ap andp and the remainderterm,, (wr, ¢, «, ff)
has a bound of the form

M
|Rn(wr, ¢, o, B)| < W[ﬂ(Z +d) + | log(rw)[1(rw)"~* (55)

for some positive constants M and d

Proof. Since the imaginary part of the integrand in (5) is an odd functianaoid the real part is even,
removing the odd part and performing the change of variable cesi+ 1 in definition (5) ofl, z(r, ¢)
we have

ewr(cos(ﬁ—d))—l) o0
Ly p(r, ¢) = —/0 e """ f(u, ¢, B)du, (56)

o

with

1 sin(u¢)[coshut) cos(up) — cos(ue)]
Vuu+2) [coshiur) cos(up) — cos(ue)]? + sintP(ur)sin?(up)
andr = arccosliu + 1), ¢ > 0.

Using the formula arccosh= In[u + v/u2? — 1], u>1[1, Eq. (4.6.21)]we can write

1 Sin(ue)[c¢(u) coxup) — cosug)]

Vuu+2) [¢(u) cogpp) — cosue]? + 52(u)sin’(up)’

fu, ¢, o p)=

fu, oo p)=
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with

T4+u+Vulu+2)+[1+u+ Julw+2)]#
2 9
T4+u+Julu+2)*—[14+u+ Julu+2)]*
5 .

From this representation we see tifat, ¢, o, f) has an expansion in inverse powersiaflid for each
¢ €[0,«] andp € [0, 2n):

c(u) =

S(u) =

flu, g2 p) = Zﬁ$3+ﬁw¢m

k=0

wheref, (u, ¢, «, f) = O(u™*""1) asu — oo uniformly in ¢ € [0, «]. The coefficientd/; (¢, p) are the
Taylor coefficients of the expansion of the functiont f (u=1, ¢, «, ) atu = 0 (Vo = 0). Applying[25,
Chapter 6, Theorem 13(ii}p the integral in the right-hand side of (56) we obtain

ch,ﬂ(ra ¢) =

ewr (Cosf—p)—1) n—1 (_1)k
- [Tk — Vi log(wr)l(wr)* + wrR,(wr, ¢, o, p) |, (57)
k=0

with the following expressions for the coefficierfisand the remaindeR,, (wr, ¢, «, ). CoefficientsT},
read

. Vi
T = Vip(k+1) + | MIf;s]l+———1,
k= Viy(k + )+H|rkn+l{ Lf S]+S_k_1}

whereM| f; s] denotes the Mellin transform éfts, f(fo L f(u, ¢, p) du, or its analytic continuation
as a function ok. On the other hand, the remaind®r(wr, ¢, o, f) reads

Ry (wr, ¢, 0, p) = (wr)n—l /OOO fn,n(t)e_wrz dr, (58)

with

(— "
— 1!

In particular, the coefficierity, which gives the dominant term of the expansion, reads

fan(®) = ¢ /‘< — 0" L fu(u, §, o, B) du. (59)

=MMH=A . d. B du

_ /o" sin(u¢)[coshiur) cos(up) — cos(u¢p)] dt
o [coshur) cos(up) — cosud)1? + sink?(ur)sin®(up)
sin(u¢) sinh(ur) ]O"
cogu¢) coshiur) — cosup) Jo

From here we see that the valueTafdepends on the relative valueoéndp:

|
= — — arctan
u
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Casel: If 0<p<a.

1 if ¢>p,
To=—¢+aiz if =4
0 if p<§B.

Case2:a < fi<a—+m.

To=0K (¢, a, B) — ¢.
Case3: a + n< .

To= oK (p, o, 2r— f) — ¢.

Using these formulas, introducing (57) in (8)—(12) and rearranging terms we obtain (53).
Finally, we obtain the error bound (55) which shows that expansion (54) is not only asymptotic but
convergent. From the Taylor formula for the remainder,

h™ (@)

o, ¢, 0, ) = PR

for certainé € (0, u1), u >0, whereh(u) = u=*fwu1, ¢, «, f). The singularities of:(x) are away
from the positive real axis. Therefore, using the Cauchy formula for the derivetig), we see that

M M
|fn(”,¢s o, ﬁ)|<m’ |fn(u, d)a o, ﬁ)|<ma (60)

whereM is a bound forz(w) on the portion of the complex-plane surrounding the positive real axis:
{w e C, |lw—u|l<d,u € R"} whered represents the distance from the closest of the singularities of
h(u) to the positive real axis.

Introducing these bounds in (59) we obtfid, Eq. (2.23)]

M
|fn,n(f)|<m(1 —dlogt) Vtel0,1]
and introducing the first bound of (60) in (59) we hat4d, Eq. (2.24)]

M
|fn,n(t)|<m vVt € [0, 00).

We divide the integral in the right-hand side of (58) at the poiatl and use the first bound g, , (r)
in the interval[0, 1] and the second one in the internfal co). The bound (55) follows after simple
computations. [J

Remark 5. From (53) we see that

Uppn ) =2 40 (f) when’ — 0.
o & &
The discontinuity of the inflow boundary condition is smoothed inside the domain by a linear function

of the polar angleb.
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5. Conclusions

The singularly perturbed convection—diffusion probléR) has been defined on a sector by means of
discontinuous Dirichlet boundary conditions with a discontinuity located on the corner of the domain. We
have obtained in Proposition 2 an integral representation of the unique solution of pi@blsosceptible
of an asymptotic analysis. Then, two complementary asymptotic expansions of the solution have been
obtained in Theorems 1 and 2. One expansion is valid in the singularelimitO™ and away from the
discontinuityr = 0. The other one is valid near the discontinuity: O for ¢ >¢g > 0.

These two asymptotic expansions are derived from two quite different asymptotic procedures. While
the asymptotic expansion in the singular limit is obtained from a classical uniform method, the asymptotic
expansion near the discontinuity is derived by means of a distributional approach. Two quite different
asymptotic principles match into the same problem.

The asymptotic expansion in the singular limit shows that the main contribution from the data’s dis-
continuities to the shape of the solution on the singular layers is contained in a certain combination of
error functions, exponential functions and step functions. This combination is necessary to approach the
behaviour of the solution on the interior layer of widtli,/¢) or on the boundary layer of width(e).

On the other hand, the asymptotic expansion near the discontinuities shows that the discontinuity on the
boundary is smoothed inside the domain by means of a simply linear function of the polar angle.

We want to do emphasis on the simultaneous dependence of the solution of p(@blemith the
singular parameter and with the distance to the origin (the discontinuity point of the boundary data).
The solutionU,, s depends om and the distanceto the origin through the quotienfs (see Proposition
2). This is why the expansion for small(largew) in Theorem 1 does not hold near the origin. And
conversely, the expansion near the origin (smjdh Theorem 2 only holds when the distarrde smaller
thane.

We suspect that, as in the problem analyzed here, the error function plays a fundamental role in
the approximation of the solution of many singularly perturbed convection—diffusion problems with
discontinuities in the boundary conditions (problems defined over more general domains and by more
general coefficients). This will be the subject of further investigations. Then, the asymptotic expansions
of the solution of problen{P) presented here may give a qualitative idea about the behaviour of the
solutions of more realistic convection—diffusion problems with discontinuous Dirichlet conditions. This
should help in the development of suitable numerical methods for those prof2énps 6] For a similar
discussion with a parabolic problem qd€l6].
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