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By José L. López and Ester Pérez Sinusı́a

We consider a singularly perturbed convection–diffusion equation, −ε�u +
�v · �∇u = 0, defined on two domains: a quarter plane, (x , y) ∈ (0, ∞) × (0, ∞),
and an infinite strip, (x , y) ∈ (−∞, ∞) × (0, 1). We consider for both problems
discontinuous Dirichlet boundary conditions: u(x , 0) = 0 and u(0, y) =
1 for the first one and u(x , 0) = χ [a,b](x) and u(x , 1) = 0 for the second. For
each problem, asymptotic expansions of the solution are obtained from an
integral representation in two limits: (a) when the singular parameter ε → 0+

(with fixed distance r to the discontinuity points of the boundary condition)
and (b) when that distance r → 0+ (with fixed ε). It is shown that in both
problems, the first term of the expansion at ε = 0 is an error function or a
combination of error functions. This term characterizes the effect of the dis-
continuities on the ε-behavior of the solution and its derivatives in the boundary
or internal layers. On the other hand, near the discontinuities of the boundary
condition, the solution u(x , y) of both problems is approximated by a linear
function of the polar angle at the discontinuity points.

1. Introduction

Mathematical models that involve a combination of convective and diffusive
processes are quite important in all of science, engineering, and other fields
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where mathematical modeling is required. Very often the dimensionless
parameter that measures the relative strength of the diffusion is quite small.
This implies that thin boundary and interior layers are present in the solution
and singular perturbation problems arise. This kind of problem appears, for
example, in fluid or gas dynamics [20, 32] heat transfer [2, 3], theory of
plates and shells [18], or magnetohydrodynamic flow [10, 25]. An extensive
selection of singularly perturbed convection–diffusion problems of the physics
or engineering may be found in [22]: pollutant dispersal in a river estuary,
vorticity transport in the incompressible Navier–Stokes equations, atmospheric
pollution, groundwater transport, turbulence transport, etc.

Mathematically speaking, a singularly perturbed convection–diffusion
problem is a boundary value problem of second-order in which the coefficients
of the second order derivatives are small. In this paper, we focus our attention
on two-dimensional linear elliptic problems of the form: find a function
u ∈ C(�̄) ∩ D2(�) such that{

−ε�u + �v · �∇u = f (x), x ∈ � ⊂ IR2,

u(x)|∂� = g(x̃), x̃ ∈ ∂�,
(P)

where ε is a small parameter and g represents the Dirichlet boundary conditions
of the problem.

The location and shape of the boundary layers of u depend, among other
things, on the prescribed velocity field �v, on the shape of the boundary ∂� and
on the existence of discontinuities in g(x̃). For example, regular boundary layers
of size O(ε) appear on the outflow boundary, whereas parabolic boundary
layers of size O(

√
ε) appear along the characteristic boundaries. For more

details on the shape and nature of boundary layers see for example [5–7, 12,
13] and references therein.

The knowledge of an asymptotic expansion for the solution may help in the
development of a suitable numerical method for these kind of problems because
it gives the qualitative behavior of the solution [33, p. 6]. An ε-uniformly
convergent method requires the analysis of uniform convergence and then,
accurate error bounds for the local error. The accuracy of these error bounds
depends on the precision in the approximation given by the first terms of the
asymptotic expansion. The design of the numerical technique is based on the
exact integration of the first terms of the asymptotic expansion or of functions
that have a similar behavior in the singular layer. Along this line, some
references which propose exponential fitting techniques or special meshes
based on asymptotic expansions are [4, 15]. Classical references are [9, 21].

There is an extensive literature devoted to the construction of asymptotic
expansions of the solution of singular perturbation problems based on matching
techniques. The book of Il’in [13] contains a quite exhaustive and general
analysis for different equations and domains. Other important references are for
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example [6, 8, 17, 23, 33]. But a perturbative analysis based on an expansion of
the solution in powers of the perturbation parameter does not always work for
discontinuous Dirichlet boundary conditions g(x̃) [31]. This is so because the
coefficients of the expansion contain derivatives of g(x̃), whereas the solution
of the elliptic problem (P) is smooth inside the domain. Therefore, it is of
interest to consider an approach based on the exact solution [31].

The solution of (P) may be decomposed in the form u = u1 + u2, where u1

is the solution of (P) with f (x) = 0 and u2 is the solution of (P) with g(x̃) = 0.
Therefore, the effect of the discontinuous data on the solution u is contained in
u1 and must be analyzed for the homogeneous problem (P) with f (x) = 0.

There are some useful examples of approaches based on an integral
representation for the solution of some singular convection–diffusion problems
with constant coefficients. Grasman analyzed the problem ε�u − ∂ yu = 0
on a quarter plane with continuous Dirichlet boundary conditions [11]. The
solution u is represented as a Bessel transform by using the Green’s function for
the associated Helmholtz problem. A uniformly valid asymptotic expansion in
the whole quarter plane is derived for ε → 0. Cook and Ludford analyze the
same problem on a rectangle by considering first the problem defined on a
semi-infinite strip [5]. Asymptotic expansions for ε → 0 are obtained from the
exact solution written as a Fourier sine transform of the Green’s function of
the transformed problem.

But, in order to analyze boundary layers originated by discontinuous boundary
data, it is interesting to find the exact solution of a problem with a discontinuity
in the boundary condition. Hedstrom and Osterheld [12] studied the problem
ε�u − ∂ yu = 0 on the positive quarter plane with boundary conditions u(x , 0) =
0 and u(0, y) = 1. They obtained the first two terms of the asymptotic
expansion of u for ε → 0 from a Fourier integral representation of u. The first
term of this expansion is an error function. A more detailed investigation on
this subject has been developed by Temme [29–31]. The problem ε�u −
∂ yu = 0 on the positive quarter plane with boundary conditions u(x , 0) = 0 and
u(0, y) = φ(y) is analyzed in [29]. An integral representation for u is obtained
from the associated Helmholtz equation. A complete asymptotic expansion of
u for ε → 0 is derived from this integral representation for some particular
cases of boundary conditions φ(y). The same problem, but in a generic sector,
is considered in [30], where an integral representation for u is obtained from
an integral representation of the solution of the associated Helmholtz equation.
Different asymptotic expansions as ε → 0 are obtained depending on the
angle of the sector and again the error function plays an important role in
the analysis. A similar problem defined in the interior of a circle is analyzed
in [31].

Using similar techniques to those of Temme, Shih has analyzed parabolic
equations with discontinuous Dirichlet boundary conditions defined over
certain unbounded domains. The problem ut − εuxx + pux = 0, with initial
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condition u(x , 0) = f (x), boundary condition u(0, t) = g(t), and defined
on the quarter plane x > 0, t > 0, is considered in [27]. It is shown there
that the solution u(x , t) has an asymptotic expansion in powers of ε whose
coefficients are error functions. Similar results have been obtained in [26, 28]
for the same problem, but with a more general coefficient for the term ux and a
nonhomogeneous equation: ut − εuxx + p(x , t)ux = F(x , t). It is shown that
the solution is approximated by the integral of the error function.

The role of the error function in problems with discontinuous boundary
data has also been pointed out in [16, 17]. The exact solution of the problem
ut − uxx = 0 in the quarter plane x > 0, t > 0, with initial condition u(x , 0) =
c and boundary condition u(0, t) = 0 is an error function [16, Section 1.4.2].
The solution of the problem ε�u = uy in the unit square with discontinuous
boundary data is approximated by error functions [16, Section 8.3.3]. The
same conclusion is obtained in [17, Section 3.1] for a general elliptic equation
with constant coefficients defined on a more general domain. Apart from
discontinuities in the boundary condition, another source of error functions in
the dominant part of the solution of convection–diffusion problems is a change
of sign in the convection vector [14, Section 6.2.3].

In this paper, we try to shed light on the influence that the discontinuities
of the boundary conditions have on the boundary or interior layers. For
that purpose, we consider two homogeneous singular perturbation problems
with discontinuous boundary data: problems (P1) and (P2) defined below, in
Sections 2 and 3 respectively. Problem (P1) displays a boundary or an interior
layer, whereas (P2) displays boundary and interior layers. As in the references
mentioned, the starting point is an integral representation for the solu-
tion. From this integral, we derive complete asymptotic expansions for the
solution, not only in the singular limit ε → 0+, but also in the limit r → 0+,
where r represents the distance to the discontinuity at the boundary. Then, we
approximate the solution on the whole domain, including the neighborhood of
the discontinuity point(s). Moreover, error bounds are obtained at any order of
approximation for both expansions.

In Sections 2 and 3, we study the convection–diffusion problem in a
quarter plane and in an infinite strip, respectively. Some comments and a few
conclusions are postponed to Section 4.

2. Convection–diffusion in a quarter plane

We consider a singularly perturbed convection–diffusion problem in the first
quadrant with Dirichlet boundary conditions:{

−ε�U + �v · �∇U = 0, (x, y) ∈ �1 ≡ (0, ∞) × (0, ∞)

U (x, 0) = f (x), U (0, y) = g(y), U ∈ C(�̄1\{(0, 0)}) ∩ D2(�1),
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where �v ≡ |�v|(sin β, cos β) is a constant vector and ε > 0 is a small
parameter. If the boundary conditions are compatible, f (0) = g(0), asymptotic
approximations of U (x , y) may be obtained by means of standard techniques.
For example, we can try the method of matched asymptotic expansions [23],
or asymptotic methods of integrals using an integral representation of U (x , y)
[34]. If f (0) �= g(0), we can decompose the problem into two simpler problems:
one problem with compatible boundary conditions plus a second problem with
a discontinuous boundary condition at the corner point (0, 0):{

−ε�U + �v · �∇U = 0, (x, y) ∈ �1

U (x, 0) = 0, U (0, y) = 1, U ∈ C(�̄1\{(0, 0)}) ∩ D2(�1),
(P1)

Therefore, in the remainder of this section we consider the problem (P1).
Based on the method proposed by Temme for β = 0 in [31], after the change

of the dependent variable U (x, y) = F(x, y) exp(�v · �r/(2ε)), where �r ≡ (x, y),
(P1) is transformed to the Helmholtz equation for F(x , y):{ �F − w2 F = 0, (x, y) ∈ �1

F(x, 0) = 0, F(0, y) = e−wy cos β, F ∈ C(�̄1\{(0, 0)}) ∩ D2(�1),
(1)

where w ≡ |�v|/(2ε).
The problem (P1) may not have a unique solution unless we impose a

convenient condition upon U(x, y) concerning its growth at infinity. For that
purpose we use the following lemma, proved in [30],

LEMMA 1. Assume that F is a regular function in a region � satisfying: (i)
�F − w2 F = 0, (ii) F = 0 on the boundary of �, (iii) limr→∞F(x , y)/
I 0(wr ) = 0, where r ≡

√
x2 + y2 and I 0(z) is the modified Bessel function of

order 0. Then F = 0 in the whole domain �.

The appearance of the modified Bessel function I 0(wr ) in Lemma 1 is not
surprising, because I 0(wr ) satisfies the Helmholtz equation �F − w2 F = 0. It
has an exponential behavior at ∞: I0(wr ) = O(exp(wr )/

√
2πwr ) when r →

∞. Therefore, just the additional condition F = o(exp(wr )/
√

2πwr ) when
r → ∞ is enough to guarantee uniqueness of (1) (a more general discussion
can be found in [13, p. 150, Theorem 2.1]).

Then, the problem: find U ∈ C(�̄1\{(0, 0)}) ∩ D2(�1) such that{ −ε�U + �v · �∇U = 0, (x, y) ∈ �1

U (x, 0) = 0, U (0, y) = 1, lim
r→∞ U (x, y)/I0(wr ) = 0,

(P′
1)

has a unique solution.
In the following proposition we obtain the solution of (P′

1) by means of an
integral representation.
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PROPOSITION 1. Consider polar variables x = r cos φ, y = r sin φ with 0 <

r < ∞, 0 ≤ φ ≤ π/2 and write w ≡ |�v|/(2ε). Then, for 0 ≤ β < π/2, the
solution Uβ(x , y) of (P′

1) is

Uβ(x, y) = χ(π/2,π )(φ + β) + 1
2δφ+β,π/2 + ewr sin(φ+β) I (r, φ, β), (2)

where χ represents the characteristic function, δ the Kronecker delta, so

χ(a,b)(x) ≡
{

1 if x ∈ (a, b)

0 if x /∈ (a, b),
δa,b ≡

{
1 if a = b

0 if a �= b

and

I (r, φ, β) ≡ 1

π i

∫ ∞

−∞
e−wr cosh t sinh(t + iφ) cosh(t + iφ) dt

cos2 β + sinh2(t + iφ)
. (3)

When φ + β = π/2, this integral must be understood as a principal value
integral.

Proof : By applying the sine transform in the variable y to equation (1), we
obtain an explicit representation of F(x , y) valid for |β| < π/2:

F(x, y) = 1

π i

∫ ∞

−∞
eit y cos β−x

√
w2+t2 cos2 β t dt

t2 + w2
.

(The condition F(0, y) = e−wy cos β is checked by using the Cauchy residue
theorem. But it holds only if cos β > 0, that is, |β| < π/2.) Then, the function
Uβ(x, y) ≡ e�v·�r/(2ε) F(x, y), with F(x , y) defined above, is the solution of (P′

1).
After the change of variable t cos β = w sinh u and using polar variables, the
solution Uβ(x , y) is

Uβ(x, y) = ewr sin(φ+β)

π i

∫ ∞

−∞
e−wr cosh(u−iφ) sinh u cosh u du

sinh2 u + cos2 β
. (4)

In order to make the following discussion simpler, we further restrict the angle
β to 0 ≤ β < π/2. The poles of the integrand are situated at the points
u = i(π/2 ± β) + inπ, n ∈ Z/. Then, if we shift the contour in the complex
plane up to the line �u = φ, we just cross the pole u = i(π/2 − β) if φ >

π/2 − β and we do not cross any pole if φ < π/2 − β. On the other hand,
the real part of the exponent of the integrand is −rw cosh(�u) cos(φ − �u).
Therefore, shifting the integration contour up to the line �u = φ and using the
Cauchy residue theorem we obtain the desired result (see Figure 1). �

Observation 1. The explicit representation given in Proposition 1 is only valid
when the angle β between the convection vector �v and the y-axis is restricted
to the interval [0, π/2]. Nevertheless, an explicit integral representation for
the solution U(x, y) of the problem (P′

1) whatever the direction of �v is, may be
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i0

Re(u)
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i(  -  /2)
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Figure 1. The integrand in (4) has just a single pole situated between the straight lines �u =
0 and �u = π/2: u = i(π/2 − β).

obtained by means of symmetry arguments:

U (x, y) =




Uβ(x, y) if 0 ≤ β < π/2,

e2wx sin βU−β(x, y) if − π/2 < β ≤ 0,

1 − e2wy cos βUβ−π/2(y, x) if π/2 ≤ β < π,

e2wx sin β
[
1 − e2wy cos βU−β−π/2(y, x)

]
if − π < β ≤ −π/2,

1 + e−2wy [U0(x, y) − 1] if β = π,

where Uβ(x , y) is given in (2) and (3). Therefore, in the remainder of this
section, we restrict ourselves to β ∈ [0, π/2).

From the representation of U(x, y) given above is difficult to infer the
behavior of the solution of (P′

1). But, for ε → 0+, r ≥ r0 > 0, we can
approximate the integral I (r , φ, β) in (3) by an error function plus an
asymptotic expansion in powers of ε, whereas for r → 0+, ε ≥ ε0 > 0, we can
approximate I (r , φ, β) by an asymptotic expansion in powers of r. This is the
subject of the two following subsections.

2.1. Asymptotic expansion of U(x, y) in the singular limit

In this section, we denote by �∗
1 the upper half plane indented at the point (0, 0)

(see Figure 2a): �∗
1 ≡ �1\Dr0 (0, 0).

THEOREM 1. Let w ≡ |�v|/(2ε) and x = r cos φ, y = r sin φ. Then, for (x , y)
∈ �∗

1, the solution Uβ(x , y) of (P′
1) reads

Uβ(x, y) = U 0
β (x, y) + ewr (sin(φ+β)−1)

π
√

2wr
U 1

β (r, φ), (5)

where

U 0
0 (x, y) ≡ erfc

(√
w(r − y)

)
, (6)
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Figure 2. (a) Indented region �∗
1 in Theorem 1. (b) Indented region �∗

2 in Theorems 3 and 4.

U 0
β (x, y) ≡ 1

2




erfc
(√

wr (1 − sin(φ + β))
)

if φ + β <
π

2

1 if φ + β = π

2
,

2 − erfc
(√

wr (1 − sin(φ + β))
)

if φ + β >
π

2

β > 0.

(7)

The function U 1
β(r , φ) has the asymptotic expansion

U 1
β (r, φ) =

n−1∑
k=0

(−1)k Tk(φ, β)
�(k + 1/2)

(2wr )k
+ Rn(r, φ, β), (8)

where empty sums must be understood as zero. For φ + β �= π/2 and k = 0,
1, 2, . . . ,

Tk(φ, β) ≡ cos(φ + β) cos(φ − β)

sin(2β)
Ak + 4 cot(2β)(Ak−2 − Ak−1)

− 1 + δβ,0

2 sin2k+1
(

1
2

(
π
2 − φ − β

)) , (9)

where A−1 = A−2 = 0 and, for k = 0, 1, 2, . . . ,

Ak ≡
k∑

j=0

2 j (1/2)k− j

(k − j)!

[ j/2]∑
l=0

(
j + 1
2l + 1

) [
sin2l(φ + β)

cos2 j+2(φ + β)
− sin2l(φ − β)

cos2 j+2(φ − β)

]
.

(10)
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On the other hand, if φ + β = π/2 and φ �= π/2,

Tk(φ, β) ≡ sin(2φ)

4

k∑
j=0

(1/2)k− j

(k − j)!

[
1

cos2 j+2 φ
− 1

sin2 j+2 φ

]
, k = 0, 1, 2, . . .

(11)

An error bound for the remainder term is given by

|Rn(r, φ, β)| ≤ Mn(φ, β)�(n + 1/2)

(2wr )n
, (12)

where

Mn(φ, β) ≡
∣∣∣∣cos(φ + β) cos(φ − β)

sin(2β)

∣∣∣∣ |An| + 4| cot(2β)| Max{|An−1|, |An−2|}

+ 1 + δβ,0

2
∣∣∣sin2n+1

(
1
2

(
π
2 − φ − β

))∣∣∣ (13)

if φ + β �= π/2 and Mn(φ, β) ≡ |T n| if φ + β = π/2.

Proof : The asymptotic features of the integral (3) are: (i) there is a saddle
point at t = 0, (ii) there is a pole located at sin(φ − it) = cos β, (iii) both
coalesce when φ + β → π/2. Uniform asymptotic expansions of this kind
of integrals are obtained by using the error function as a basic approximant
[34, Chapter 7, Section 2]. Therefore, we split off the pole of the integrand at
t = i(π/2 − φ − β):

sinh(t + iφ) cosh(t + iφ)

cos2 β + sinh2(t + iφ)
= 1 + δβ,0

4 sinh 1
2 (t + i(φ + β − π/2))

+ f (t, φ, β),

with the obvious definition of f (t , φ, β). Using the complementary error
function representation [31],

e−r cos αerfc

(√
2r sin

α

2

)
= 1

2π i

∫ ∞

−∞
e−r cosh t dt

sinh 1
2 (t − iα)

, 0 < α < 2π,

(14)

we obtain

I (r, φ, β) = 1

2
sign

(
π

2
− φ − β

)
(1 + δβ,0)e−wr sin(φ+β)

× erfc
(√

wr (1 − sin(φ + β))
) + 1

π i

∫ ∞

−∞
e−wr cosh t f (t, φ, β) dt,
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where sign(0) must be understood as zero. Therefore, from Equation (2) we
obtain (5), where U 0

β(x , y) is given in (6) and (7) and

U 1
β (r, φ) ≡ −iewr

√
2wr

∫ ∞

−∞
e−wr cosh t f (t, φ, β) dt. (15)

When φ + β = π/2, this last integral is a principal value integral. To obtain
the asymptotic expansion of U 1

β(r , φ) for large w and bounded r ≥ r0 > 0, we
perform the change of variable sinh(t/2) ≡ u and remove the odd part of
f (t , φ, β) from (15). We obtain

U 1
β (r, φ) = 2

√
2wr

∫ ∞

0
e−2wru2

g(u2, φ, β) du, (16)

where

g(u, φ, β) = [4 cos(2β)u(u + 1) + cos2(β) − sin2(φ)]
g1(u)

sin(2β)

− 1 + δβ,0

2

(
sin

1

2

(
π

2
− φ − β

))
g2(u),

g1(u) ≡ 1√
1 + u

sin(2φ) sin(2β)

(2u + 1 + s+)(2u + 1 − s+)(2u + 1 + s−)(2u + 1 − s−)
,

(17)

where we have denoted s± ≡ sin(φ ± β), and

g2(u) ≡ 1

u + sin2 1

2

(π

2
− φ − β

) .

Splitting g1(u) into simple fractions, we derive the Taylor expansion of
g(u, φ, β)

g(u, φ, β) =
n−1∑
k=0

(−1)k Tk(φ, β)uk + rn(u, φ, β), (18)

where rn(u, φ, β) = O(un) as u → 0 and coefficients T k(φ, β) are given in
(9)–(11). Introducing the expansion (18) in (16) we obtain (8), where the
remainder term

Rn(r, φ, β) ≡
∫ ∞

0
e−2wru2

rn(u2, φ, β) du. (19)

Finally, we shall derive the error bound (12) which shows the asymptotic
character of the expansion (8). Consider first φ + β �= π/2. Applying the
binomial formula for the derivative of a product we realize that the nth
u-derivative of each of the two rational functions g1(u) and g2(u) has the same
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sign as (−1)n ∀u ∈ [ 0, ∞). By using the Lagrange formula for the remainders
r (1)

n (u) and r (2)
n (u) in the Taylor expansions of these two functions at u = 0,

g1(u) =
n−1∑
k=0

(−1)k Akuk + r (1)
n (u),

g2(u) =
n−1∑
k=0

(−u)k

sin2k+2 1
2

(
π
2 − φ − β

) + r (2)
n (u),

we realize that two consecutive remainder terms in these expansions have
opposite sign [19, Lemmas 3 and 4]: r ( j)

n (u)r ( j)
n+1(u) < 0, j = 1, 2 ∀u ∈ [0, ∞),

n ∈ IN ∪ {0}. After applying the error test [34, p. 38], we obtain∣∣r (1)
n (u)

∣∣ ≤ |An|un,
∣∣r (2)

n (u)
∣∣ ≤ un

sin2n+2 1
2

(
π
2 − φ − β

)
.

Therefore, the remainder term rn(u, φ, β) for g(u, φ, β) satisfies

|rn(u, φ, β)| ≤ Mn(φ, β)un, (20)

where Mn(φ, β) is given by (13). If φ + β = π/2, then g(u, φ, β) is itself a
rational function and, following the same reasoning as before, we obtain (20)
with Mn(φ, β) = |T n|. Introducing (20) in (19) we obtain (12). �

Observation 2. When φ = π/2 and β = 0 or φ = β = π/4, the integrand in
(15) is an odd function of t and the integral U 1

β(r , φ) vanishes. Therefore, for
β = 0, the exact solution verifies U 0(0, y) = U 0

0(0, y) = 1 (as it should be) over
the characteristic line φ = π/2. On the other hand, for β = π/4, Uπ/4(x , x) =
U 0

π/4(x , x) = 1/2 over the characteristic line φ = π/4. Moreover, for
β > 0, U 0

β(x , y) approximately satisfies the boundary conditions: U 0
β (x, 0) =

O(ewx(sin β−1)) and U 0
β (0, y) = 1 + O(ewy(cos β−1)), w → ∞.

Remark 1. From (5), (8), and (12) Uβ(x, y) = U 0
β (x, y) + O(

√
ε) as ε →

0+, r ≥ r0 > 0 and then, the first-order approximation is an error function.
This error function exhibits an interior layer of width O(

√
ε) and parabolic

level lines of equation r − �v · �r = C · ε near the half-straight line t�v, t > 0
(see Figure 3).

2.2. Asymptotic expansion of U(x, y) near the discontinuity

The asymptotic expansion given in (8) breaks down when r → 0+. The
asymptotic approximation of Uβ(x , y) near the point (0, 0) requires a completely
different analysis. An asymptotic approximation of Uβ(x , y) near the corner
point with bounded ε (r → 0+, ε ≥ ε0 > 0) is given in the following theorem.
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1

U (x,y)
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v

Figure 3. Graph of the first order approximation U 0
π/4(x , y) to the solution of the problem

(P′
1) for ε = 0.1 and β = π/4. The convection vector �v “drags” the discontinuity of the

boundary condition at (0, 0) originating a parabolic layer along the direction �v.

THEOREM 2. Let w ≡ |�v|/(2ε) and x = r cos φ, y = r sin φ. Then, for
(x , y) ∈ �1, the solution Uβ(x , y) of (P′

1) satisfies

Uβ(x, y) = 2φ

π
+ rw

π
ewr (sin(φ+β)−1)U 1

β (r, φ), (21)

where

U 1
β (r, φ) ≡ T0

rw

(
1 − ewr (1−sin(φ+β))

) +
n−1∑
k=1

(−1)k

k!
[Tk − Vk log(rw)] (rw)k−1

+ Rn(r, φ, β), (22)

where V 1 = 0 and empty sums must be understood to be zero. For k = 2, 3,
4, . . . , the remaining coefficients V k are given by

Vk ≡ (−2)k−1

sin(2β)

[
4 cos(2β)(Ak+1 − Ak) + (cos2 β − sin2 φ)Ak−1

]
, (23)

where A1 = A2 = 0 and, for k = 3, 4, 5, . . . ,

Ak ≡
k∑

j=3

(1/2)k− j

2 j (k − j)!

[( j−1)/2]∑
l=0

(
j

2l + 1

)
(sin2l(φ − β) − sin2l(φ + β)). (24)

Coefficient T 0 is given by

T0 =




2φ if φ + β < π/2,

2φ − π/2 if φ + β = π/2,

2φ − π if φ + β > π/2.

(25)
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For k = 1, 2, 3, . . . ,

Tk = Vkψ(k + 1) + (−2)k−1�(k + 1/2)√
π (k − 1)!

[H ′(k + 1, β)

+ (ψ(k + 1/2) − ψ(k) + log 2)H (k + 1, β)], (26)

where

H (s, β) ≡ cos(φ + β)(M2(s, β) − M1(s, β))

+ cos(φ − β)(M2(s, −β) − M1(s, −β)), (27)

M1(s, β) ≡ sin2s−3

(
π

4
− φ + β

2

)
F

(
s − 1/2, 1/2

3/2

∣∣∣∣ cos2

(
π

4
− φ + β

2

))

and

M2(s, β) ≡ cos2s−3

(
π

4
− φ + β

2

)
F

(
s − 1/2, 1/2

3/2

∣∣∣∣ sin2

(
π

4
− φ + β

2

))
.

(28)

In these formulas, F( a,b
c | z) denotes the Gauss hypergeometric function and

H ′(s, β) the derivative of H (s, β) with respect to s.
For n = 1, 2, 3, . . . , an error bound for the remainder term is given by

|Rn(r, φ, β)| ≤ nBn−1(φ, β) + Bn(φ, β)(| log(rw)| + n + e−1)

n!
(rw)n−1, (29)

where

Bn(φ, β) ≡ 2n−1

| sin(2β)|
[
4| cos(2β)| Max{| Ān+1|, | Ān|}

+ | cos2 β − cos2 φ‖ Ān−1|
]

(30)

with

Ā−1 ≡ Ā2

cos2(φ + β) cos2(φ − β)
, Ā2 ≡ sin(2φ) sin(2β),

Ā0 ≡ Ā2

cos2(φ − β)
, Ā1 ≡ Ā2

1 + sin(φ − β)
, and Āk = Ak for k = 3, 4, 5, . . .

(31)

Proof : After the change of variable cosh t = u + 1 in definition (3) of
I (r , φ, β) we have

I (r, φ, β) = e−wr

π

∫ ∞

0
e−wru f (u, φ, β) du, (32)
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where

f (u, φ, β) =
[

cos(2β)

(
1 + 2

u

)
+ cos2 β − sin2 φ

u2

]
g(u)

sin(2β)
, (33)

g(u) ≡ sin(2φ) sin(2β)

u3

√
1 + 2

u

(
1 + 1 + s+

u

)(
1 + 1 − s+

u

)(
1 + 1 + s−

u

)(
1 + 1 − s−

u

),

(34)
where s± are defined after Equation (17). Splitting g(u) in simple fractions we
obtain an expansion of f (u, φ, β) in inverse powers of u:

f (u, φ, β) =
n−1∑
k=0

Vk

uk+1
+ fn(u), (35)

where fn(u) = O(u−n−1) as u → ∞, V 0 = V 1 = 0 and, for k = 2, 3,
4, . . . , the remaining V k are given in (23) and (24). Applying [34, Chapter 6,
Theorem 13(ii)] to the integral in (32) and using (2), we obtain

Uβ(x, y) = χ(π/2,π )(φ + β) + 1

2
δφ+β,π/2 + ewr (sin(φ+β)−1)

π

×
[

n−1∑
k=0

(−1)k

k!
[Tk − Vk log(rw)] (rw)k + Rn(r, φ, β)

]
, (36)

with the following expressions for the coefficients T k and the remainder
Rn(r , φ, β):

Tk ≡ Vkψ(k + 1) + lim
s→k+1

{
M[ f ; s] + Vk

s − k − 1

}
, (37)

where M[ f ; s] denotes the Mellin transform of f (u, φ, β) at s,∫ ∞
0 us−1 f (u, φ, β) du, or its analytic continuation. On the other hand, the

remainder is

Rn(r, φ, β) ≡ (rw)n
∫ ∞

0
fn,n(t)e−rwt dt, (38)

where

fn,n(t) ≡ (−1)n

(n − 1)!

∫ ∞

t
(u − t)n−1 fn(u) du. (39)

Splitting f (u, φ, β) and using [24, p. 303, Eq. (24)], the Mellin transform
M[ f ; s] may be written as

M[ f ; s] = −2s−2�(2 − s)�(s − 1/2)√
π

H (s, β), (40)
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where H (s, β) is given in (27) and (28). Then, using [1, Eq. (15.1.6)] we
obtain M[ f ; 1] = V 0 with V 0 given in (25), and M[ f ; 2] = V 1, with V 1

given in (26) for k = 1. For s ≥ 3, the Mellin transform M[ f ; s] is defined by
the analytic continuation of (40). In particular, when s = k + 1 + ε, k = 2, 3,
4, . . . , and ε a small positive number,

M[ f ; k + 1 + ε] = (−2)k−1�(k + 1/2)√
π (k − 1)!

{
H (k + 1, β)

ε

+ H ′(k + 1, β) + [log 2 − ψ(k) + ψ(k + 1/2)]

× H (k + 1, β) + O(ε)

}
, ε → 0+. (41)

On the other hand, the analytic continuation of
∫ ∞

0 us−1 f (u, φ, β) du at s =
k + 1 + ε, k = 2, 3, 4, . . . , can also be obtained by performing the change of
variable u = 1/t and integrating by parts k + 2 times,

M[ f ; k + 1 + ε] = �(ε)

�(k + 2 + ε)

∫ ∞

0
t−ε f (k+2)

(
1

t
, φ, β

)
dt.

Using this formula and (35), we see that limε→0{εM[ f ; k + 1 + ε]} = −V k .
Then, introducing this limit in (37) and using (41) we obtain (26) for k = 2, 3,
4, . . . . Rearranging terms in (36) we obtain (21) and (22) with V k , T k given in
(23)–(26).

Finally, we obtain the error bound (29), which shows the convergent character
of the expansion (22). The function g(u) satisfies

g(u) =
n−1∑
k=0

(−2)k+1 Ak+1

uk+1
+ gn(u),

with gn(u) = O(u−n−1) as u → ∞ and Ak given in (24). Following a similar
reasoning as above, we conclude that gn(u) satisfies the error test, and therefore,
for n = 0, 1, 2, . . . ,

|gn(u)| ≤ 2n+1|An+1|
un+1

, |gn(u)| ≤ 2n|An|
un

,

where the Ak are given in (31). Then,

| fn(u)| ≤ Bn(φ, β)

un+1
, | fn(u)| ≤ Bn−1(φ, β)

un
, (42)

where Bn(φ, β) is given in (30). Introducing the second bound of (42) in (39)
we obtain [19, Eq. (23)],

| fn,n(t)| ≤ 1

(n − 1)!
(Bn(φ, β) − Bn−1(φ, β) log t) ∀t ∈ [0, 1]
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Figure 4. Graph of the first order approximation, 2φ/π , to the solution of the problem (P′
1)

near the corner for ε = 0.1 and β = π/4.

and introducing the first bound of (42) in (39) we obtain [20, Eq. (24)],

| fn,n(t)| ≤ Bn(φ, β)

n!t
∀t ∈ [0, ∞).

We divide the integral on the right-hand side of (38) at the point t = 1 and use
the first bound of f n,n(t) in the interval [0, 1] and the second one in the
interval [1, ∞). Formula (29) follows after simple computations. From (24)
and (30) we easily deduce that |Bn(φ, β)| ≤ Cn2n for some C > 0 and then
limn→∞ Rn(r , φ, β) = 0. �

Remark 2. From (21), (22), and (29) we have

Uβ(x, y) = 2φ

π
+ O(r ), r → 0+, ε ≥ ε0 > 0.

The discontinuity at (0, 0) is smoothed inside the corner by a linear function of
the angle φ between �r and the x-axis independently of �v (see Figure 4).

3. Convection–diffusion in an infinite strip

We consider a singularly perturbed convection–diffusion problem in an infinite
strip of width 1, parallel to the x-axis in which one of the Dirichlet boundary
conditions has two discontinuities:{

−ε�U + �v · �∇U = 0, (x, y) ∈ �2 ≡ (−∞, ∞) × (0, 1)

U (x, 0) = χ[a,b](x), U (x, 1) = 0, U ∈ C(�̄2\{(a, 0), (b, 0)}) ∩ D2(�2)
(P2)

where �v ≡ |�v|(sin β, cos β) is a constant vector and again, ε > 0 is a small
parameter. (That is, we consider a finite source of “contamination” in the inflow
boundary located at the interval [a, b], a < b). As in the problem (P1), after
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the change of the dependent variable U (x, y) = F(x, y) exp (�v · �r/(2ε)), where
�r ≡ (x, y), problem (P2) is transformed in the Helmholtz equation for F(x , y):


�F − w2 F = 0, (x, y) ∈ �2

F(x, 0) = e−wx sin βχ[a,b](x), F ∈ C(�̄2\{(a, 0), (b, 0)}) ∩ D2(�2)

F(x, 1) = 0,

(43)

where again, w ≡ |�v|/(2ε).
As in the problem (P1), the solution U(x, y) of (P2) may not be unique unless

we impose a convenient condition upon U(x, y) concerning its growth at infinity.
In fact, using the maximum principle of elliptic partial differential equations,
we can see that the problem: find U ∈ C(�̄2\{(a, 0), (b, 0)}) ∩ D2(�2) such that{ −ε�U + �v · �∇U = 0, (x, y) ∈ �2

U (x, 0) = χ[a,b](x), U (x, 1) = 0, lim
|x |→∞

U (x, y) = 0.
(P′

2)

has a unique solution.
In the following proposition we obtain the solution of (P′

2) by means of an
integral representation.

PROPOSITION 2. Let w ≡ |�v|/(2ε). Then, for (x , y) ∈ �2 and 0 ≤ β ≤ π/2,
the solution Uβ(x , y) of (P′

2) reads

Uβ(x, y) = 1
2

[
χA(x, y) + χA0 (x, y) − e2(y−1)w cos β

(
χB(x, y) + χB0 (x, y)

)]
+ ew(y cos β+x sin β)[I (x − a, y) − I (x − a, 2 − y) − I (x − b, y)

+ I (x − b, 2 − y) + R(x, y)], (44)

where the functions I (X, Y ), R(x, y), χA(x, y), χA0 (x, y), χB(x, y), and
χB0 (x, y), are defined as follows:

I (X, Y ) ≡ ew(X−x) sin β

2π i

∫ ∞

−∞
e−rw cosh t cosh(t + iφ)

sinh(t + iφ) − i sin β
dt (45)

with {
X = r sin φ, 0 < r < ∞
Y = r cos φ, −π/2 ≤ φ ≤ π/2

(46)

in each integral I (X , Y ),

R(x, y) ≡ 1

2π i

∫ ∞

−∞

e−aw sin β+i(x−a)t − e−bw sin β+i(x−b)t

(t − iw sin β)e2
√

w2+t2

× sinh((1 − y)
√

w2 + t2)

sinh(
√

w2 + t2)
dt (47)
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Figure 5. Region A is limited by the straight lines y = 0, y = 1, x = a + y tan β and x = b
+ y tan β. Region B is limited by the straight lines y = 0, y = 1, x = a + (2 − y) tan β and
x = b + (2 − y) tan β. Every one of the four functions F(X , Y ) in (51) contributes to U β (x ,
y) with I (X , Y ) and the second term in (53) or (54). The first line in (44) (related to the
regions A and B) comes from the addition of those four second terms. The angle φ is different
in each one of those four terms and is defined by the coordinate system (X , Y ) involved in
each of them (see Equation (46)): the origin of the four coordinate systems (X , Y ) involved in
(51) are (a, 0), (b, 0), (a, 2), and (b, 2) and are depicted in the figure.

and χ A(x , y), χA0 (x, y), χB(x, y), and χB0 (x, y) are the characteristic functions
of the respective regions A, A0, B, and B0 depicted in Figure 5:

χR ≡
{

1 if (x, y) ∈ R,

0 if (x, y) /∈ R,

A ≡ {(x, y) ∈ IR2, 0 < y < 1, a ≤ x − y tan β ≤ b},
B ≡ {(x, y) ∈ IR2, 0 < y < 1, a ≤ x + (y − 2) tan β ≤ b}.

(48)

Regions A0 and B0 are the interior sets of A and B respectively. The integral
(45) must be understood as a principal value integral if φ = β.

Proof : The exact solution of the problem (43), valid for 0 ≤ β ≤ π/2, may
be obtained by taking the Fourier transform of the differential equation with
respect to x:

F(x, y) = 1

2π i

∫ ∞

−∞

e−aw sin β + i(x−a)t − e−bw sin β + i(x−b)t

t − iw sin β

× sinh((1 − y)
√

w2 + t2)

sinh(
√

w2 + t2)
dt.
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Then, the function Uβ(x , y) ≡ ew(xsin β+ycos β) F(x , y), with F(x , y) defined
above, is the solution of (P′

2). We write

Uβ(x, y) = ew(x sin β+y cos β)

2π i

∫ ∞

−∞

(
e−aw sin β+i(x−a)t − e−bw sin β+i(x−b)t

)

×(
e−y

√
w2+t2 − e(y−2)

√
w2+t2) H (t) dt

t − iw sin β
, (49)

where H (t) ≡ (1 − e−2
√

w2+t2
)−1. Splitting H (t) in a constant term plus an

exponentially decaying one:

H (t) = 1 + e−2
√

w2+t2

1 − e−2
√

w2+t2
, (50)

the right-hand side of (49) becomes the sum of two integrals. After the change
of variable t = w sinh u in the first of these integrals we obtain

Uβ(x, y) = ew(x sin β+y cos β)[F(x − a, y) − F(x − a, 2 − y)

− F(x − b, y) + F(x − b, 2 − y) + R(x, y)], (51)

valid for 0 < y < 2, where

F(X, Y ) ≡ ew(X−x) sin β

2π i

∫ ∞

−∞
exp{w[i X sinh u − Y cosh u]} cosh u

sinh u − i sin β
du

and R(x , y) is given in (47). Using the polar variables (46) adapted to each
integral F(X , Y ) we have

F(X, Y ) = ew(X−x) sin β

2π i

∫ ∞

−∞
e−rw cosh(u−iφ) cosh u

sinh u − i sin β
du. (52)

The poles of the integrand of F(X , Y ) are located at the points u = iβ + 2kπ i
and u = −iβ + (2k + 1)π i, k ∈ Z/ and the real part of the exponent reads
−rw cosh(�u) cos(φ − �u). Therefore, we can use the Cauchy’s residue
theorem for shifting the integration contour in each of the integrals F(X , Y ) to
the straight line �u = φ. We distinguish two cases.

Case 1. 0 < β ≤ π/2 (see Figure 6a). We apply the Cauchy residue theorem
to obtain

F(X, Y ) = I (X, Y ) + e−w(x sin β+Y cos β)
[
χ(0,π/2)(φ − β) + 1

2δφ,β

]
(53)

where I (X , Y ) is given in (45). Therefore, (44) follows.
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Figure 6. (a) The integrand in (52) has just a single pole situated between the straight lines
u = −iπ/2 and u = iπ/2: u = iβ. (b) The path �o ≡ �+

o ∪ �−
o is a small circle of radius δ.

The path � (with δ → 0) is the u-integration contour for the integrand h(u) in F(X , Y ).
With the shift u → u + iφ, � ∪ �+

o → �+ if φ > 0 and � ∪ �−
o → �− if φ < 0. Therefore,∫

�
h(u) − 1

2

∫
�o

h(u) = ∫
�+ h(u) and

∫
�

h(u) + 1
2

∫
�o

h(u) = ∫
�− h(u).

Case 2. β = 0 (see Figure 6b). Now we also apply the Cauchy residue
theorem, but taking into account now that the pole u = 0 is on the integration
contour,

F(X, Y ) = I (X, Y ) + sign(X )
e−wY

2
, (54)

where I (X , Y ) is given in (45) and sign(0) must be understood as zero.
Therefore, (44) follows. �

PROPOSITION 3. With the same notation as in the preceding proposition, for
(x , y) ∈ �2 and 0 ≤ β ≤ π/2, the solution Uβ(x , y) of (P′

2) is

Uβ(x, y) = 1
2 [χA(x, y) + χA0 (x, y)] · ewy cos β

2
· sinh[(1 − y)w cos β]

sinh(w cos β)

+ ew(y cos β+x sin β)[J (x − a, y) − J (x − b, y)],
(55)

where χ A(x , y) and χA0 (x, y) are defined in Proposition 2 and, for c = a, b:

J (x − c, y) ≡ e−wc sin β

2π i

∫ ∞

−∞
e−rw cosh t+yw cosh(t+iφ) cosh(t + iφ)

sinh(t + iφ) − i sin β

× sinh[(1 − y)w cosh(t + iφ)]

sinh[w cosh(t + iφ)]
dt (56)

with {
x − c = r sin φ, 0 < r < ∞

y = r cos φ, −π/2 ≤ φ ≤ π/2.
(57)

The integral (56) is a principal value integral if φ = β.
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Proof : It is similar to the proof of the preceding proposition, but without
splitting the function H (t). �

Observation 2. The explicit representation given in Proposition 2 is only valid
when the angle β between the convection vector �v and the y-axis is restricted
to the interval [0, π/2]. Nevertheless, an explicit integral representation for
the solution U(x, y) of the problem (P′

2) whatever the direction of �v is, may be
obtained by means of symmetry arguments:

U (x, y) =




Uβ(x, y) if 0 ≤ β ≤ π/2,

U−β(−x, y) if − π/2 ≤ β ≤ 0,

e2wy cos βUπ−β(x, y) if π/2 ≤ β ≤ π,

e2wy cos βUπ+β(−x, y) if − π < β ≤ −π/2,

where Uβ(x , y) is given in (44)–(50). Therefore, in the remainder of this
section, we restrict ourselves to β ∈ [0, π/2].

From the representation of U(x, y) given in Proposition 2 or Proposition 3 it
is difficult to infer the behavior of the solution of (P′

2). But, for ε → 0+,
r ≥ r0 > 0, we can approximate the integral I (r , φ, β) in (3) by an error
function plus an asymptotic expansion in powers of ε, whereas for r → 0+,
ε ≥ ε0 > 0, we can approximate I (r , φ, β) by an asymptotic expansion in
powers of r. This is the subject of the two following subsections. But the
explicit computation of the coefficients is now much more involved than for
the quarter plane. Therefore, we will just show the form of the expansions and
indicate how to calculate the coefficients. Nevertheless, the dominant terms in
the expansions are explicitly computed.

3.1. Asymptotic expansion of U(x, y) in the singular limit

In this section, we denote by �∗
2 the infinite strip indented at the points (a, 0)

and (b, 0) (see Figure 3b):

�∗
2 ≡ �2\{Dr0 (a, 0) ∪ Dr0 (b, 0)}.

THEOREM 3. Write w ≡ |�v|/(2ε). Then, for (x , y) ∈ �∗
2, the solution

U(x, y) of (P′
2) reads

Uβ(x, y) = U 0
β (x, y) + 1

2π
√

2w
U 1

β (x, y), (58)
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where

U 0
β (x, y)

≡ 1 + δβ,π/2

2

{
sign

[
β − arctan

(
x − a

y

)]
erfc

(√
wζ (x − a, y)

)

− e2(y−1)w cos βsign

[
β − arctan

(
x − a

2 − y

)]
erfc

(√
wζ (x − a, 2 − y)

)

− sign

[
β − arctan

(
x − b

y

)]
erfc

(√
wζ (x − b, y)

)

+ e2(y−1)w cos βsign

[
β − arctan

(
x − b

2 − y

)]
erfc

(√
wζ (x − b, 2 − y)

)}

+ 1

2

[
χA(x, y) + χA0 (x, y) − e2(y−1)w cos β

(
χB(x, y) + χB0 (x, y)

)]
.

The functions χA, χA0, χB , and χB0 are defined in Proposition 2, sign(0) = 0
and

ζ (X, Y ) ≡
√

X2 + Y 2 − X sin β − Y cos β. (60)

The function U 1
β(x , y) has an asymptotic expansion

U 1
β (x, y) =

n−1∑
k=0

Tk(x, y)

(2w)k
+ Rn(x, y), (61)

where empty sums must be understood as zero. The coefficients T k (defined
below) are smooth functions of x and y,O(1) when w → ∞ uniformly for
(x , y) ∈ �∗

2.
The remainder Rn(x , y) satisfies a bound

|Rn(x, y)| ≤ M
�(n + 1/2)

(2wd)n

[
e−wζ (x−a,y)

[(x − a)2 + y2]n/2
+ e−wζ (x−b,y)

[(x − b)2 + y2]n/2

]
, (62)

for positive constants M and d given below.

Proof . We consider for Uβ(x , y) the explicit representation given in
Proposition 2. For large w and fixed r, the asymptotic features of the integral
I (X , Y ) defined in (45) are: (i) there is a saddle point at t = 0. (ii) The pole
situated at t = i(β − φ) and the saddle point coalesce when φ → β. Once
again, uniform asymptotic expansions of this kind of integrals are obtained by



Singularly Perturbed Convection–Diffusion Problems 79

using the error function as the basic approximant. Therefore, we split off the
pole of the integrand at t = i(β − φ):

cosh(t + iφ)

sinh(t + iφ) − i sin β
= 1 + δβ,π/2

2 sinh 1
2 (t + i(φ − β))

+ f (t, φ, β),

with the obvious definition of f (t , φ, β).
Using again the complementary error function representation (14) we obtain

that the integral I (X , Y ) is

I (X, Y ) = sign

[
β − arctan

(
X

Y

)]
(1 + δβ,π/2)

e−w(Y cos β+x sin β)

2

× erfc
(√

wζ (X, Y )
)

+ Ī (X, Y ), (63)

where using (46),

Ī (X, Y ) ≡ ew(X−x) sin β

2π i

∫ ∞

−∞
e−rw cosh t f (t, φ, β) dt.

Therefore, from (44) we obtain (58) where U 0
β(x , y) is given in (59) and (60) and

U 1
β (x, y) = 2π

√
2wew(y cos β+x sin β)[ Ī (x − a, y) − Ī (x − a, 2 − y)

− Ī (x − b, y) + Ī (x − b, 2 − y) + R(x, y)]. (64)

In order to obtain the asymptotic expansion of Ī (X, Y ) for large w and bounded
r ≥ r0 > 0, we perform the change of variable sinh(t/2) ≡ u and remove the
odd part of f (t , φ, β) from (64). We obtain

Ī (X, Y ) = ew(X−x) sin β−wr

π

∫ ∞

0
e−2wru2

g(u2, φ, β) du, (65)

where

g(u, φ, β) ≡ 2(1 + 2u) sin β cos φ − sin(2φ)

[4u2 + 4(1 + sin β sin φ)u + (sin φ + sin β)2]
√

1 + u

+
(1 + δβ,π/2) sin φ − β

2

u + sin2 φ − β
2

, (66)

This function has a Taylor expansion at u = 0 for each φ ∈ [−π/2, π/2]:

g(u, φ, β) =
n−1∑
k=0

g(k)(0, φ, β)

k!
uk + gn(u, φ, β), (67)
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where

gn(u, φ, β) ≡ g(n)(ξ, φ, β)

n!
un

for some ξ ∈ (0, u). The singularities of g(u, φ, β) are away from the positive
real axis (let d be the distance from the closest of those singularities to the
positive real axis). Therefore, using the Cauchy formula for the derivative
g(n)(ξ , φ, β), we see that

|gn(u, φ, β)| ≤ M
n!

dn
un, (68)

where M is a bound for g(w, φ, β) on the portion of the complex w-plane
surrounding the positive real axis: {w ∈ C/, |w − u| < d, u ∈ IR+}. Introducing
the expansion (67) in (65) and this in (64) we obtain (61) with

Tk(x, y) ≡ �
(
k + 1

2

)
k!

[Ak(x − a, y) − Ak(x − a, 2 − y)

− Ak(x − b, y) + Ak(x − b, 2 − y)], (69)

where

Ak(X, Y ) ≡ e−wζ (X,y)

rk+1/2
g(k)(0, φ, β).

On the other hand,

Rn(x, y) ≡ 2
√

2w[Bk(x − a, y) − Bk(x − a, 2 − y)

− Bk(x − b, y) + Bk(x − b, 2 − y)], (70)

where, using (46):

Bk(X, Y ) ≡ e−wζ (X,y)
∫ ∞

0
e−2wru2

gn(u2, φ, β) du.

Introducing (68) in (70) we obtain (62). On the other hand, we write

R(x, y) = S(x − a, y) − S(x − b, y),

where, for c = a, b:

S(x − c, y) ≡ e−cw sin β

2π i

∫ ∞

−∞

ei(x−c)t

(t − iw sin β)e2
√

w2+t2

sinh((1 − y)
√

w2 + t2)

sinh(
√

w2 + t2)
dt.

We perform similar manipulations to those performed on F(x , y) in the proof
of Proposition 2: a change of variable t → s given by t = w sinh s and a shift
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in the integration contour s → u with u = s + iφ2. Then we are led to

S(x − c, y) = −e−wx sin β−2w cos β sinh[(1 − y)w cos β]

2 sinh[w cos β]

×
[
χ(0,π/2)(φ2 − β) + 1

2
δφ2,β

]

+ 1

2π

∫ ∞

−∞
e−wr2 cosh u−y cosh(u+iφ2) sinh(u + iφ2) cosh(u + iφ2)

sin2 β + sinh2(u + iφ2)

× sinh[(1 − y)w cosh(u + iφ2)]

sinh[w cosh(u + iφ2)]
du, (71)

where r2 and φ2 are polar coordinates for the cartesian coordinates (x − c,
2 − y). After the change of variable u → t given by t = sinh(u/2) in the last
integral, I R, we can see that this integral has a bound of the form

|IR| ≤ M̄e−wr2−w cos φ2, (72)

where M̄ is a positive constant independent of x and y. Then, |R(x, y)| ≤ M̄e−αw

for some α > 0 uniformly in �2. This bound has been included in formula
(62). �

THEOREM 4. With the notation of the preceding theorem and for (x , y) ∈ �∗
2,

Uβ(x, y) = Ũ 0
β(x, y) + Ũ 1

β(x − a, y) − Ũ 1
β(x − b, y), (73)

where

Ũ 0
β(x, y) ≡ 1

2

{
(1 + δβ,π/2)sign

[
β − arctan

(
x − a

y

)]
erfc

(√
wζ (x − a, y)

)

− (1 + δβ,π/2)sign

[
β − arctan

(
x − b

y

)]
erfc

(√
wζ (x − b, y)

)

+ χA(x, y) + χA0 (x, y)

}
ewy cos β sinh[(1 − y)w cos β]

sinh[w cos β]
. (74)

For c = a, b, Ũ 1
β(x − c, y) has an asymptotic expansion in powers of w−1:

Ũ 1
β(x − c, y) = e−wζ (x−c,y)

√
2wr

[
n−1∑
k=0

T̃k(x − c, y)

(2wr )k
+ Rn(x − c, y)

]
, (75)

where empty sums are zero. The coefficients T̃k(x − c, y) are smooth functions
of x and y and O(1) when w → ∞ uniformly for (x , y) ∈ �∗

2.
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The remainder Rn(x − c, y) satisfies

|Rn(x − c, y)| ≤ M
�(n + 1/2)

(2wdr )n
(76)

for some positive constants M and d.

Proof : It is similar to the proof of the preceding theorem, but using the
representation for U given in Proposition 3. �

Remark 3. From (58), (61), and (62) or from (73), (75), and (76) we see that
Uβ(x, y) = U 0

β (x, y) + O(
√

ε) or Uβ(x, y) = Ũ 0
β(x, y) + O(

√
ε) as ε → 0+

and away from the points (a, 0) and (b, 0) (U 0
β (x, y) − Ũ 0

β(x, y) = O(
√

ε)).
Then, the first-order approximation to the solution of (P′

2) is a combination of
two or four error functions plus step functions multiplied by exponentials of y.
The first and third error functions in (59) exhibit two interior layers of width
O(

√
ε) and level lines with equation ζ (x − c, y) = constant with c = a, b.

The last line in (59) represents a regular boundary layer of width O(ε) near
the piece of the outflow boundary situated between the points (a + tan β, 1)
and (b + tan β, 1). The combination of the four error functions and the last
line in (59) exhibit two corner layers of area O(

√
ε) × O(ε) near the points

(a + tan β, 1) and (b + tan β, 1) (see Figure 7).

3.2. Asymptotic expansion of U(x, y) near the discontinuities

The asymptotic expansions given in Theorem 3 or Theorem 4 break down when
(x , y) → (a, 0) or (x , y) → (b, 0) (i.e, when r → 0+ with the identification

y

x

1

-1
y=1

U (x,y)0

Figure 7. Graph of the first-order approximation, U 0
β (x , y), to the solution of the problem

(P′
2) for β = 0 and ε = 0.1. The convection vector (0, 1) “drags” the two discontinuities of

the boundary condition at (a, 0) and (b, 0) originating two parabolic layers along the direction
of that vector. Moreover, a regular boundary layer occurs at the outflow boundary between
x = a and x = b, and two corner layers around the points (a, 1) and (b, 1) in order to satisfy
the boundary condition at y = 1.
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(46)). The asymptotic approximation of Uβ(x , y) near the points (a, 0) and
(b, 0) requires a similar analysis to Section 3.2. An asymptotic approximation
of Uβ(x , y) near the discontinuity points (a, 0) and (b, 0) with (x , y) → (a, 0)
or (x , y) → (b, 0) faster than ε → 0+ is given in the following theorem.

THEOREM 5. Write w ≡ |�v|/(2ε) and x − c = rc sin φc, y = rc cos φc with
c = a, b. Then, for (x , y) ∈ �2, the solution Uβ(x , y) of (P′

2) reads

Uβ(x, y) = 1

2
+ φa

π
+ wra

2π
e−wζ (x−a,y)U 2(x − a, y) + U 3

a (x, y), (77)

Uβ(x, y) = 1

2
− φb

π
− wrb

2π
e−wζ (x−b,y)U 2(x − b, y) + U 3

b (x, y), (78)

where, for c = a, b, U 2(x − c, y) has a convergent expansion in powers of
wrc:

U 2(x − c, y) ≡ πsign(φc) − 2φc

wrc

[
1 − ewζ (x−c,y)

]

+
n−1∑
k=1

(−1)k

k!
[Tk(φc, β) − Vk(φc, β) log(rcw)](rcw)k−1

+ Rn(x − c, y), (79)

with V 1= 0, empty sums are zero and sign (0) = 0. Coefficients T k(φ, β) and
V k(φ, β) are regular functions of φ and β defined below.

The remainder term Rn(x − c, y) satisfies

|Rn(x − c, y)| ≤ M
n(2 + d) + | log(wrc)|

n!

(
rcw

d

)n−1

(80)

for some positive constants M and d defined below. On the other hand,

U 3
c (x, y) ≡ ewy cos β+wx sin β[∓I (x − c, y) − I (x − a, 2 − y) + I (x − b, 2 − y)

+ R(x, y)] − 1

2
e2wy cos β(χB(x, y) + χB0 (x, y)) (81)

and is of the order O(e−α/ε) when ε → 0+ uniformly in �2 for some α > 0.

Proof : We consider for Uβ(x , y) the representation given in Proposition 2.
After the change of variable cosh t = u + 1 in the definition (45) and (46) of
I (x − c, y) we have

I (x − c, y) = −e−wrc

2π

∫ ∞

0
e−rcwu f (u, φc, β) du, (82)
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where f (u, φ, β) = f (1)(u, φ, β) + f (2)(u, φ, β),

f (1)(u, φ, β) ≡
[

sin2 β − sin2 φ

u2
− cos(2β)

(
1 + 2

u

)]
g(u), (83)

f (2)(u, φ, β) ≡ (u + 1) sin β

2 sin φ

[
(1 + sin2 β cos2 φ)

(
1 + 2

u

)
− sin2 φ

u2

]
g(u),

(84)

g(u) ≡ sin(2φ)

u3

√
1 + 2

u

(
1 + 1 + s+

u

) (
1 + 1 − s+

u

) (
1 + 1 + s−

u

) (
1 + 1 − s−

u

) ,

(85)
and s± ≡ cos(β ± φ).

Splitting g(u) in fractions, we obtain an expansion of f (u, φ, β) in inverse
powers of u valid for each φ ∈ [−π/2, π/2]:

f (u, φ, β) =
n−1∑
k=0

Vk(φ, β)

uk+1
+ fn(u, φ, β), (86)

where fn(u, φ, β) = O(u−n−1) as u → ∞ uniformly in φ ∈ (−π/2, π/2). The
coefficients V k(φ, β) are nothing but the Taylor coefficients of the expansion
of the function s−1 f (s−1, φ, β) at s = 0 (V 0 = 0). Applying [34, Chapter 6,
Theorem 13(ii)] to the integral in the right-hand side of (82) we obtain

I (x − c, y) = e−wrc

2π

[
n−1∑
k=0

(−1)k

k!
[Tk − Vk log(wrc)](wrc)k + Rn(rc, φc, β)

]
,

(87)

with the following expressions for the coefficients T k and the remainder
Rn(rc, φc, β). Here

Tk ≡ Vkψ(k + 1) + lim
s→k+1

{
M[ f ; s] + Vk

s − k − 1

}
, (88)

where M[ f ; s] denotes the Mellin transform of f at s,
∫ ∞

0 us−1 f (u, φc, β) du,
or its analytic continuation. On the other hand, the remainder is

Rn(rc, φc, β) ≡ (rcw)n
∫ ∞

0
fn,n(t)e−rcwt dt, (89)

where

fn,n(t) ≡ (−1)n

(n − 1)!

∫ ∞

t
(u − t)n−1 fn(u, φc, β) du. (90)
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In particular, the coefficient T 0, which gives the dominant term of the
expansion, is

T0 = M[ f ; 1] = M
[

f (1); 1
] + M

[
f (2); 1

]
. (91)

Splitting f (1)(u, φ, β) in simple fractions and using [24, p. 303, Eq. (24)] and
[1, Eq. (15.1.6)] we obtain

M[ f (1); 1] =




2φ if φ < β,

2φ − π/2 if φ = β,

2φ − π if φ > β.

On the other hand, undoing the initial change of variable (cosh t = u + 1) and
using the Cauchy’s residue theorem, we have

M[ f (2); 1] =




π if φ < β,
π

2
if φ = β,

0 if φ > β.

Therefore,

T0 =




2φ + π if φ < β,

2φ if φ = β,

2φ − π if φ > β.

Introducing (87) in (44) for c = a and c = b and rearranging terms we
obtain (79) and (78) respectively.

Finally, we obtain the error bound (80) which shows that the expansion (79)
is convergent. From the Taylor formula for the remainder,

fn(u, φ, β) ≡ h(n)(ξ )

n!un+1

for some ξ ∈ (0, u−1), where h(s) ≡ s−1 f (s−1, φ, β). The singularities of h(s)
are away from the positive real axis (let us write d for the distance from the
closest of those singularities to the positive real axis). Therefore, using the
Cauchy formula for the derivative h(n)(ξ ), we see that

| fn(u, φ, β)| ≤ M

dnun+1
, | fn(u, φ, β)| ≤ M

dn−1un
, (92)

where M is a bound for h(w) on the portion of the complex w-plane surrounding
the positive real axis: {w ∈ C/, |w − s| < d, s ∈ IR+}.

Introducing these bounds in (90) we obtain [19, Eq. (2.23)],

| fn,n(t)| ≤ M

dn(n − 1)!
(1 − d log t) ∀t ∈ [0, 1],



86 J. L. López and E. P. Sinusı́a

x
1

-1

U (x,y)0

r

r0

+
+

- -

0

(x,y)

(x,y)

Figure 8. Graph of the first-order approximation, 1
2 + φa

π
and 1

2 − φb
π

, to the solution of the
problem (P′

2) near the discontinuity points of the boundary condition for ε = 0.1.

and introducing the first bound of (92) in (90) we obtain [19, Eq. (2.24)],

| fn,n(t)| ≤ M

n!dnt
∀t ∈ [0, ∞).

We divide the integral in the right-hand side of (89) at the point t = 1 and
use the first bound of f n,n(t) on the interval [0, 1] and the second one on
the interval [1, ∞). The bound (80) follows after simple computations. That
U 3

c(x , y) is of the order O(e−α/ε) when ε → 0+ follows from Theorem 3. �

Remark 4. From Theorems 3 and 5 we see that

Uβ(x, y) = 1

2
+ φa

π
+ O

(
ra

ε

)
+ O(e−α/ε)

as ra → 0+ and ε → 0+ with ra/ε → 0 and

Uβ(x, y) = 1

2
− φb

π
+ O

(
rb

ε

)
+ O(e−α/ε)

as rb → 0+ and ε → 0+ with rb/ε → 0 and some α > 0. Once again,
the discontinuities of the inflow boundary condition are smoothed inside the
domain by a linear function of the angle φc between �rc ≡ (x − c, y) and the
line x = c, with c = a or c = b (see Figure 8).

4. Conclusions

The singularly perturbed convection–diffusion problems (P1) and (P2) are
defined including discontinuous Dirichlet boundary conditions, where the
discontinuities are located on a corner or on a side of the inflow boundary,
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respectively. For each problem, we have obtained an integral representation of
the solution susceptible to an asymptotic analysis. Then, for each problem, two
complementary asymptotic expansions of the solution have been obtained. One
expansion is valid in the singular limit ε → 0+, away from the discontinuities.
The other one is valid near the discontinuities with ε ≥ ε0 > 0 for (P1) and with
ε → 0+ and rc/ε → 0+ for (P2), where rc is the distance to the discontinuity
points (c, 0) for c = a, b.

These two asymptotic expansions are derived from two quite different
asymptotic methods. Whereas the asymptotic expansion in the singular limit
is obtained from a classical uniform method, the asymptotic expansion near
the discontinuity is derived by a distributional approach. Therefore, two quite
different asymptotic principles match into the same problem. On the other
hand, despite having these expansions a quite different nature, the error test is
present under both expansions, producing accurate error bounds.

The asymptotic expansion in the singular limit shows that the main
contribution of the data’s discontinuities to the shape of the solution on the
boundary layers is contained in a combination of error functions. In the
problem (P1), just one error function is required to reproduce approximately
the behavior of the solution in the layer, whereas problem (P2) requires the
combination of two or four error functions and a step function to approach
the behavior of the solution on the two interior layers, the regular layer and the
corner layers located near the points (a + tan β, 1) and (b + tan β, 1). On
the other hand, the asymptotic expansion near the discontinuities shows that
the discontinuity on the boundary is smoothed inside the domain by means of
a simple linear function of an appropriate angle at the discontinuity.

We want to emphasize the simultaneous dependence of the solution of the
two problems (P1) and (P2) on the singular parameter ε and the distance to the
discontinuity point(s) of the boundary data. In problem (P1), the solution Uβ

depends on ε and the distance r to the discontinuity point (0, 0) through the
quotient r/ε (see Proposition 1). In problem (P2), the solution Uβ depends on
ε and the distances ra and rb to the discontinuity points (a, 0) and (b, 0)
essentially through the quotients ra/ε and rb/ε (see Proposition 2). This is why
the expansions for small ε (large w) in Theorems 1, 3, and 4 do not hold near
the discontinuities. And conversely, the expansions near the discontinuities
(small r, ra, or rb) in Theorems 2 and 5 only hold when the distances r , ra, or
rb are smaller than ε.

The analysis presented in this paper is applicable to more general problems:
Consider any convection–diffusion problem (homogeneous or nonhomogeneous)
with constant coefficients defined on the regions considered in Sections 2 or
3 and with Dirichlet conditions discontinuous at the points (0, 0) or (a, 0)
and (b, 0), respectively. Then, that problem may be decomposed into several
simpler problems. One of those problems is just (P1) or (P2) and the remaining
ones are defined using continuous Dirichlet data. Moreover, we suspect that,
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as in the problems analyzed here, the error function plays a fundamental
role in the approximation of the solution of many singularly perturbed
convection–diffusion problems with discontinuities in the Dirichlet boundary
conditions (problems defined over more general domains and through more
general coefficients). This will be the subject of further investigations.
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