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Abstract

We consider a singularly perturbed convection-diffusion problem, −ε4 u +
−→v · −→∇u = 0 defined on a sector A ≡ {r, φ |r ≥ 0, 0 ≤ φ ≤ α} with discontinuous
Dirichlet conditions u(r, 0) = 0 and u(r, α) = 1. An asymptotic expansion of
u(r, φ) is obtained from an integral representation when: a) the singular parame-
ter ε → 0+ (with fixed r) and b) r → 0+ (with fixed ε). In the singular limit, the
solution u is approximated by error functions and exponential functions. Near
the discontinuity of the boundary condition r = 0, the solution u of the problem
is approximated by a linear function of the polar angle φ.

Introduction

The solution of a singularly perturbed convection-diffusion problem usually presents
boundary and/or interior layers. The location and shape of these layers depend, among
other things, on the discontinuities of the boundary condition. An ”a priori” knowledge
of the location of the internal or boundary layers is quite useful to design numerical
methods for this kind of problems. This information may be obtained from an asymp-
totic expansion of the solution [5], [7]. There is an extensive literature devoted to
the construction of approximated solutions of singular perturbation problems based on
matching of asymptotic expansions (see for example [2], [5], [6] or [7] for a historical
survey on the subject). But a perturbative analysis based on an expansion of the so-
lution in powers of the perturbation parameter does not always work for discontinuous
Dirichlet boundary conditions [10]. This is so, because the coefficients of the expan-
sion contain derivatives of the boundary condition, whereas the solution of the elliptic
problem is smooth inside the domain.

Some particular problems with discontinuous Dirichlet data have been already con-
sidered in the literature. For example, Hedstrom and Osterheld [3] studied the problem
ε∆u− ∂yu = 0 on the positive quarter plane with boundary conditions u(x, 0) = 0 and
u(0, y) = 1. They obtained the first two terms of the asymptotic expansion of u for
ε → 0+ from a Fourier integral representation of u. The first term of this expansion is
an error function. A more detailed investigation has been developed by Temme in [8]:
an integral representation for u is obtained from the associated Helmholtz equation
and a complete asymptotic expansion of u for ε → 0+ is derived from this integral rep-
resentation. The same equation ε∆u − ∂yu = 0, but in a generic sector, is considered



in [9], where an integral representation for u is obtained from the associated Helmholtz
equation. Different asymptotic expansions for ε → 0+ are obtained depending on the
angle of the sector and again the error function plays an important role in the anal-
ysis. A similar problem defined in the interior of a circle is analyzed in [10]. In all
these problems, the approximation is not valid near the discontinuities of the boundary
condition.

In this paper we try to shed light on the influence that the discontinuities of
the boundary condition have on the boundary or interior layers of the solution of
convection-diffusion problems. For that purpose, we analyze the problem considered
by Temme on a sector but for a general convection vector −→v , not only −→v = (0, 1).
This problem displays boundary or interior layers. As in the references mentioned in
the above two paragraphs, the starting point to analyze the problem is an integral
representation for the solution. We approximate the solution by deriving asymptotic
expansions from this integral, not only in the singular limit ε → 0+, but also near the
discontinuity (r → 0+), where r represents the distance to the discontinuities. Then,
we approximate the solution on the whole domain, including the neighborhood of the
discontinuity point r = 0.

In section 2 we obtain an integral representation for the solution. In section 3 we
derive an asymptotic expansion of the solution for ε → 0+ whereas in section 4 we
derive an asymptotic expansion for r → 0+. Some comments are postponed to section
5.

The problem and an exact solution

We consider the problem:

{
−ε4 U +−→v · −→∇U = 0 in Ω ≡ { r, φ | r > 0, 0 < φ < α}
U(r, 0) = 0, U(r, α) = 1, | limr→∞ U(r, φ)| < ∞, U ∈ C(Ω̄ \ {(0, φ)}) ⋂D2(Ω)

(P )

where −→v ≡ |−→v |(cos β, sin β), 0 ≤ β < 2π is a constant vector, ε > 0 is a small
parameter and 0 < α < 2π. (Observe the discontinuous Dirichlet condition at the
corner of the sector, see fig. 1 (a)). We use the polar coordinates x = r cos φ, y =
r sin φ with 0 < r < +∞ and 0 ≤ φ ≤ α.

After the change of the dependent variable U(r, φ) = 1− F (r, φ) exp (−→v · −→r /(2ε)),
where −→r ≡ (r cos φ, r sin φ), the problem (P ) is transformed in the Helmholtz equation
for F (r, φ):





4F − w2F = 0 in Ω
F (r, 0) = e−wr cos β, F (r, α) = 0
| limr→∞ F (r, φ) exp (wr cos(β − φ)) | < ∞, F ∈ C(Ω̄ \ {(0, φ)}) ⋂D2(Ω)

where w ≡ |−→v |/(2ε).
In the following proposition we obtain the solution of the problem (P ) by means of

an integral representation.
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Figure 1. (a) Domain Ω of problem (P). (b) Indented region Ω∗ in theorem 1.

Proposition 1. Write w ≡ |−→v |/(2ε). Then, for (r, φ) ∈ Ω the solution Uβ(r, φ) of
(P ) reads

1. If 0 < β < α < 2π:

Uβ(r, φ) = χ(β,α](φ) +
1

2
δφ,β − I(r, φ),

2. If 0 < α < β < α + π:

Uβ(r, φ) =

[β+φ
2α ]∑

k=1

e−wr(cos(β+φ−2kα)−cos(β−φ)) −
[β−φ

2α ]∑

k=1

e−wr(cos(β−φ−2kα)−cos(β−φ))+

1

2
e−wr(1−cos(β−φ))

(
δβ−φ

2α
,[β−φ

2α ] − δβ+φ
2α

,[β+φ
2α ]

)
− I(r, φ),

3. If 0 < α + π ≤ β < 2π:

Uβ(r, φ) = 1 +

[ 2π+φ−β
2α ]∑

k=1

e−wr(cos(−φ+β+2kα)−cos(β−φ)) −
[ 2π−φ−β

2α ]∑

k=0

e−wr(cos(φ+β+2kα)−cos(β−φ))+

1

2
e−wr(1−cos(β−φ))

(
δ 2π−φ−β

2α
,[ 2π−φ−β

2α ] − δ 2π+φ−β
2α

,[ 2π+φ−β
2α ]

)
− Iβ−2π(r, φ),

4. If β = α:
Uβ(r, φ) = −I(r, φ),

5. If β = 0:
Uβ(r, φ) = 1− I(r, φ)

where the function I(r, φ) is defined as follows:

I(r, φ) ≡ ewr cos(β−φ)

2α

∫ ∞

−∞
e−wr cosh t sin(µφ)

cosh(µ(t− iβ))− cos(µφ)
dt

and
µ ≡ π/α.



The solution of (P ) can not be written in terms of known functions. But, for ε → 0+

and r away from 0, we can approximate Uβ(r, φ) by an error function and elementary
functions plus an asymptotic expansion in powers of ε. For r → 0 (and ε ≥ ε0 > 0),
we can approximate Uβ(r, φ) by an asymptotic expansion in powers of r. This is the
subject of the two following sections.

Asymptotic expansion of U(r, φ) in the singular limit

In this section we denote by Ω∗ the sector shaped domain indented at the point
(0, φ) (see fig. 1 (b)):

Ω∗ ≡ {(r, φ), 0 ≤ φ ≤ α, 0 < r0 < r < ∞}

Theorem 1. Write w ≡ |−→v |/(2ε). Then, for (r, φ) ∈ Ω∗, the solution Uβ(r, φ) of (P )
given in proposition 1 reads

Uβ(r, φ) = U0
β(r, φ) +

1

2π
√

2w
U1

β(r, φ) + R(r, φ), (1)

where

1. If 0 < β < α < 2π:

U0
β(r, φ) = χ(β,α](φ) +

1

2
δφ,β +

1

2
sign(β − φ) erfc(

√
wr(1− cos(β − φ))), (2)

2. If 0 < α < β < α + π:

Uβ(r, φ) =

[β+φ
2α ]∑

k=1

e−wr(cos(β+φ−2kα)−cos(β−φ)) −
[β−φ

2α ]∑

k=1

e−wr(cos(β−φ−2kα)−cos(β−φ))+

1

2
e−wr(1−cos(β−φ))

(
δβ−φ

2α
,[β−φ

2α ] − δβ+φ
2α

,[β+φ
2α ]

)
,

(3)

3. If 0 < α + π ≤ β < 2π:

Uβ(r, φ) = 1 +

[ 2π+φ−β
2α ]∑

k=1

e−wr(cos(−φ+β+2kα)−cos(β−φ)) −
[ 2π−φ−β

2α ]∑

k=0

e−wr(cos(φ+β+2kα)−cos(β−φ))+

1

2
e−wr(1−cos(β−φ))

(
δ 2π−φ−β

2α
,[ 2π−φ−β

2α ] − δ 2π+φ−β
2α

,[ 2π+φ−β
2α ]

)
,

(4)
4. If β = α:

U0
β(r, φ) = erfc(

√
wr(1− cos(α− φ))), (5)

5. If β = 0:

U0
β(r, φ) = 1− erfc

√
wr(1− cos φ) (6)

The function U1
β(r, φ) has an asymptotic expansion in powers of w−1:

U1
β(r, φ) =

n−1∑

k=0

Tk(r, φ)

(2w)k
+ Rn(r, φ), (7)



where empty sums must be understood as zero. The coefficients Tk(r, φ) are regular
functions of r and φ in Ω∗.

The remainder Rn(r, φ) satisfies a bound of the form

|Rn(r, φ)| ≤ M
Γ(n + 1/2)

(2wdr)n
e−wr(1−cos(β−φ)) (8)

for some positive constants M and d and for some c > 0 the function R(r, φ) satisfies

{
|R(r, φ)| ≤ cewr(cos(β−φ)−1) if α < β
R(r, φ) = 0 if α > β.

(9)

Remark 1. From (1), (7), (8) and (9) we see that Uβ(r, φ) = U0
β(r, φ) + O(

√
ε) as

ε → 0+ away from the point r = 0. Then, the first order approximation to the solution
of (P ) is a linear combination of error functions and elementary functions. The error
functions in (2), (5) or (6) exhibit an interior layer of width O(

√
ε) and parabolic level

lines of equation r(1 − cos(β − φ)) = constant. When −→v is not inside the sector, the
exponential functions in (3) and (4) exhibits boundary layers of width O(ε) (see fig 4).

(a) β = π/6, α = 5π/12 (b) β = π/3, α = π/4

(c) β = 2π/3, α = 5π/12 (d) β = 7π/6, α = 3π/2

Figure 4. Graphic of the first order approximation, U0
β(r, φ), to the solution of the

problem (P ) for different values of α and β and ε = 0.1.



Asymptotic expansion of U(r, φ) near the discontinuity

The asymptotic expansion (7) breaks down when r → 0+. Then, formulas in the-
orem 1 become senseless. The asymptotic approximation of Uβ(r, φ) near the point
r = 0 requires a completely different analysis given in the following theorem.

Theorem 2. Write w ≡ |−→v |/(2ε). Then, for (r, φ) ∈ Ω, the solution Uβ(r, φ) of (P )
reads

Uβ(r, φ) =
φ

α
+

wr

α
e−wr(1−cos(β−φ))U2

β(r, φ) (10)

where U2
β(r, φ) = O(1) when wr → 0+. Moreover for n = 1, 2, 3, ..., U2

β(r, φ) has a
convergent expansion in powers of wr:

U2
β(r, φ) ≡ T0(φ, β)

rw

[
1− ewr(1−cos(β−φ))

]
+

n−1∑

k=1

(−1)k

k!
[Tk(φ, β)−

Vk(φ, β) log(rw)] (rw)k−1 + Rn(r, φ),

(11)

where empty sums must be understood as zero and sign(0) = 0. Coefficients Tk(φ, β)
and Vk(φ, β) are regular functions of φ and β in Ω.

The remainder term Rn(r, φ) verifies a bound of the form

|Rn(r, φ)| ≤ M

dnn!
[n(2 + d) + | log(rw)|](rw)n−1 (12)

for some positive constants M and d.

Remark 2. From (10), (11) and (12) we see that

Uβ(r, φ) =
φ

α
+O

(
r

ε

)
when r/ε → 0+.

The discontinuity of the inflow boundary condition is smoothed inside the domain
by a linear function of the angle φ (see fig. 5).

Figure 5. Graphic of the first order approximation, φ
α

to the solution of the problem
(P ) near the discontinuity point of the boundary condition r = 0 for ε = 0.1 and
α = 7π/6.



Conclusions

The singularly perturbed convection-diffusion problem (P ) has been defined on a
sector by means of a Dirichlet boundary condition with a discontinuity located at the
corner of the domain. We have obtained an integral representation of the solution sus-
ceptible of an asymptotic analysis. Then, two complementary asymptotic expansions
of the solution have been obtained. One expansion is valid in the singular limit ε → 0+

and away from the discontinuity r = 0. The other one is valid near the discontinuity
point r = 0.

These two asymptotic expansions are derived from two quite different asymptotic
analysis. Whereas the asymptotic expansion in the singular limit is obtained from a
classical uniform method, the asymptotic expansion near the discontinuity is derived
by means of a distributional approach. Two quite different asymptotic principles match
into the same problem.

The asymptotic expansion in the singular limit shows that the main contribution
from the data’s discontinuities to the shape of the solution on the boundary layers is
contained in a certain combination of error functions, exponential functions and step
functions. This combination is necessary to approach the behaviour of the solution on
the interior layer of width O(

√
ε) or on the boundary layer of width O(ε). On the other

hand, the asymptotic expansion near the discontinuities shows that the discontinuity
on the boundary is smoothed inside the domain by means of a simply linear function
of the polar angle.

We suspect that, as in the problem analyzed here, the error function plays a fun-
damental role in the approximation of the solution of many singularly perturbed
convection-diffusion problems with discontinuities in the boundary conditions (prob-
lems defined over more general domains and by more general coefficients). This will be
the subject of further investigations. Then, the asymptotic expansions of the solutions
of (P ) presented here may give a qualitative idea about the behaviour of the solutions
of more realistic convection-diffusion problems with discontinuous Dirichlet conditions.
This should help in the development of suitable numerical methods for those problems.
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