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ABSTRACT

Asymptotic expansions of Stieltjes and generalized Stieltjes transforms of functions

having an asymptotic expansion in negative integer powers of their variable have been

exhaustively investigated by J. P. McClure and R. Wong. In this paper we obtain

asymptotic expansions of more general Stieljes transforms:
∫ ∞

0
f(t)/(ts + z)ρdt for

large z, and
∫ ∞

0
f(t)/((ts + z)ρ(ts + w)σ)dt for large z and w. Error bounds are

obtained at any order of the approximation for a large family of integrands.
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1. Introduction

The generalized Stieltjes transform of a locally integrable function f(t) on [0,∞) is

defined by the integral [[17], chap. 8]

S(ρ; z) ≡
∫ ∞

0

f(t)

(t + z)ρ
dt,

where z is a complex variable in the cut plane |arg(z)| < π and ρ > 0. If f(t) ∼ O(t−α)

as t → ∞, then α + ρ > 1 is required. The standard Stieltjes transform corresponds

with ρ = 1.

When

f(t) ∼
∞
∑

k=0

akt−k−α, t → ∞,
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where 0 < α ≤ 1 and {ak, k = 0, ...,∞} is a sequence of complex numbers, asymptotic

expansions of S(1; z) and, in general, of S(ρ; z) for large values of z have been derived

by R. Wong. An asymptotic expansion of S(1; z) is obtained by using the distributional

approach [[16], chap. 6], whereas Mellin transforms techniques are used in [12] to derive

an asymptotic expansion of S(ρ; z).

These expansions have been used in [10] and [11] to obtain uniform and nonuniform

asymptotic expansions of symmetric standard elliptic integrals for real values of their

parameters.

On the other hand, mathematical calculations in Quantum Mechanics and in Quan-

tum Field Theory require the computation or, at least, the approximation of integrals

of the form

Ss(ρ; z) ≡
∫ ∞

0

f(t)

(ts + z)ρ
dt, Ss(ρ; z, w) ≡

∫ ∞

0

f(t)

(ts + z)ρ(ts + w)σ
dt, (1)

where s is a positive integer and

f(t) =
n−1
∑

k=K

akt−k−α + fn(t), (2)

where 0 < α ≤ 1, K ∈ Z/, ak, k = K, K + 1, K + 2, ... is a sequence of complex numbers

and fn(t) = O(t−n−α) as t → ∞. This kind of integrals appears in one-loop calculations

of physical observables and effective actions in Quantum Field Theory, where f(t) is

a rational function [[7], chap. 8, sec. 4.2], [[8], chap. 10, sec. 8]. In particular, as

has been established recently, the determination of the effective Chern-Simons coupling

constant requires the calculation of integrals of the form (1), where z and/or w are large

real parameters [2], [3], [4]. In general, the regularization techniques used to define the

quantum theories require the introduction of a large parameter (regularizator) and then,

the parameters z and/or w in (1) are large [[7], chap. 8, sec. 1], [[8], chap. 7, sec. 5].

On the other hand, the first integral in (1) for s = 2 and ρ = 1/2 is nothing but the

Glasser transform of f(t) [6], [[17], chap. 27].

In section 2, we derive asymptotic expansion of (1) for large z using a generalization

of the distributional technique of McClure and Wong [[16], chap. 6].

This paper is a strong revised version of [9]. In that paper, after a change of variable,

we replaced ts in (1) by t and f(t) by f(t1/s). Then, we introduced a complicated

generalization of McClure and Wongs distributional theory [[16], chap. 6] replacing t

by t1/s in (2) in order to apply that theory to the integrals in (1). In this paper we

just show that McClure and Wong’s distributional theory can be applied directly to

the integrals in (1) for any positive integer s (the original theory is formulated only for

s = 1). Therefore, in this paper, we offer simpler expansions than in [9] by means of

much simpler proofs.

In the remaining of the paper empty sums must be understood as zero.
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2. Asymptotic expansions

Theorem 1. Let f(t) be a locally integrable function on [0,∞) which satisfies (2) with

0 < α < 1. Then, for z ∈ C/ \ R| −, ρ > 0, α + K + sρ > 1 and n = 1, 2, 3, ...,

∫ ∞

0

f(t)

(ts + z)ρ
dt =

n−1
∑

k=K

ak
Γ((1 − α − k)/s)Γ((k + α − 1)/s + ρ)

sΓ(ρ)z(α+k−1)/s+ρ
+

⌊(n−1)/s⌋
∑

k=0

(−ρ

k

)

M [f ; ks + 1]

zk+ρ
+ Rn(ρ, s; z),

(3)

where M [f ; k + 1] denotes de Mellin transform of f(t) at w = k + 1:
∫ ∞

0
tw−1f(t)dt or

its analytic continuation at that point. The remainder term is defined by

Rn(ρ, s; z) ≡ (−1)n

zρ

∫ ∞

0

fn,n(t)
dn

dtn

[

1

(ts/z + 1)ρ

]

dt, (4)

where

fn,n(t) ≡ (−1)n−1

(n − 1)!

∫ ∞

t

(u − t)n−1fn(u)du. (5)

Proof. Consider the tempered distributions f , t−k−s
+ , δ(k) and fn acting over functions

h(t) ∈ C(∞) [[16], chap. 6]:

< f , h >=

∫ ∞

0

f(t)h(t)dt, < fn, h >= (−1)n

∫ ∞

0

fn,n(t)h(n)(t)dt,

< tk−α
+ , h >=

∫ ∞

0

tk−αh(t)dt, < t−k−α
+ , h >=

1

(α)k

∫ ∞

0

t−αh(k)(t)dt (6)

for k = 0, 1, 2, ... From [[16], chap 6, lemma 1] we have that these four distributions are

related by the equality:

f =
n−1
∑

k=K

akt
−k−α
+ +

n−1
∑

k=0

(−1)k

k!
M [f ; k + 1]δ(k) + fn, (7)

where δ(k) is the k-derivative of the delta distribution at the origin: < δ(k), h >=

(−1)kh(k)(0). The third integral in (6) is indeed the Mellin transform of h(t), M [h; w]

at w = k + 1 − α: < tk−α
+ , h >= M [h, k + 1 − α]. Moreover, by integration by parts

it may be proved that the last integral in (6) is the analytic continuation of M [h; w] to

the point w = 1 − k − α.

On the other hand Ss(ρ; z), may be written as

Ss(ρ; z) =

∫ ∞

0

f(t)

(ts + z)ρ
dt =

1

zρ

∫ ∞

0

f(t)

(ts/z + 1)ρ
dt.
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Therefore, applying (7) to the function h(t) = (ts/z+1)−ρ, and using the above formulas

and [[14], p. 298, eq. 24] we obtain (3)-(4). ⊔⊓
Theorem 2. Let f(t) be a locally integrable function on [0,∞) which satisfies (2) with

α = 1. Then, for ρ > 0, z ∈ C/ \ R| −, 1 + K + sρ > 1 and n = 1, 2, 3, ...,

∫ ∞

0

f(t)

(ts + z)ρ
dt =

⌊n/s−1⌋
∑

k=0

s−1
∑

j=1

aks+j
Γ(−k − j/s)Γ(k + j/s + ρ)

sΓ(ρ)zk+j/s+ρ
+

⌊(n−1)/s⌋
∑

k=0

(−ρ

k

)

1

zk+ρ

[

cks+1 +
aks

s
(ψ(k + ρ) + ψ(k + 1) + log z − sψ(ks + 1) − sγ)

]

+
−1
∑

k=K

ak
Γ(−k/s)Γ(k/s + ρ)

sΓ(ρ)zk/s+ρ
+ Rn(ρ, s; z),

(8)

where ck are given by

cn+1 ≡ lim
w→n

[

M [f ; w + 1] +
an

w − n

]

+ an(γ + ψ(n + 1)), (9)

γ is the Euler constant and ψ the digamma function. The remainder term Rn(ρ, s; z)

is given by (4).

Proof. It is similar to the proof of theorem 1. But now, the second line of (6) is

replaced by

< tk+, h >=

∫ ∞

0

tkh(t)dt, < t−k−1
+ , h >= − 1

k!

∫ ∞

0

h(k+1)(t) log tdt (10)

for k = 0, 1, 2, .... As in the preceding proof, < tk+, h >= M [h; k + 1]. But now,

< t−k−1
+ , h > is related to M [h;−k] by means of a more sophisticated formula:

< t−k−1
+ , h >= lim

w→−k

[

M [h; w] − hk(0)

k!(w + k)

]

− hk(0)

k!
(ψ(k + 1) + γ) ,

where M [h; w] represents indeed the analytic continuation of
∫ ∞

0
tw−1h(t)dt and may

be derived by integration by parts. Using this last formula and the first of (10) for

h(t) = (ts/z + 1)−ρ we obtain:

< tk−1
+ , h >=

Γ(k/s)Γ(−k/s + ρ)

z−k/ssΓ(ρ)
,

< t−ks−1
+ , h >=

1

zks

(−ρ

k

)

[ψ(k + ρ) + ψ(k + 1) + log z − sψ(ks + 1) − sγ]

and

< t
−ks−j−1
+ , h >=

Γ(−k − j/s)

zk+j/ssΓ(ρ)
Γ(k + j/s + ρ), j = 1, 2, . . . , s − 1.
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To complete this proof, formula (7) must also be replaced by [[16], chap 6, lemma 2]:

f =
n−1
∑

k=K

akt
−k−1
+ +

n−1
∑

k=0

(−1)k

k!
ck+1δ

(k) + fn,

where ck are given in (9). ⊔⊓
Theorem 3. Let f(t) be as in theorem 1. Then, for az, bz ∈ C/ \ R| −, ρ, σ > 0,

α + K + s(ρ + σ) > 1 and n = 1, 2, 3, ...,

∫ ∞

0

f(t)

(ts + az)ρ(ts + bz)σ
dt =

n−1
∑

k=K

Ak

z(k+α−1)/s+ρ+σ
+

⌊(n−1)/s⌋
∑

k=0

M [f ; ks + 1]Bk

zk+ρ+σ
+ Rn(ρ, σ, s; z).

(11)

Here, the coefficients Ak are defined by

Ak ≡ ak
Γ ((1 − α − k)/s) Γ (ρ + σ − (1 − α − k)/s)

sΓ (ρ + σ) aρ+(k+α−1)/sbσ
F

(

(1 − α − k)/s, σ
ρ + σ

∣

∣

∣

∣

1 − a

b

)

,

where F

(

γ, β
δ

∣

∣

∣

∣

z

)

is the Gauss hypergeometric function, and coefficients Bk are given

by:

Bk ≡ (−1)k(ρ + σ)k

k!ak+ρbσ
F

(

−k, σ
ρ + σ

∣

∣

∣

∣

1 − a

b

)

. (12)

The remainder term is given by

Rn(ρ, σ, s; z) ≡ (−1)n

zρ+σ

∫ ∞

0

fn,n(t)
dn

dtn

[

1

(ts/z + a)ρ(ts/z + b)σ

]

dt, (13)

where fn,n(t) is defined in (5).

Proof. The same proof as in theorem 1, but replacing h(t) = (ts/z + 1)−ρ by h(t) =

(ts/z + a)−ρ(ts/z + b)−σ and using [[14], p. 303, eq. 24]. ⊔⊓
Theorem 4. Let f(t) be as in theorem 2. Then, for az, bz ∈ C/ \ R| −, ρ, σ > 0,

K + 1 + s(ρ + σ) > 1 and n = 1, 2, 3, ...,

∫ ∞

0

f(t)

(ts + az)ρ(ts + bz)σ
dt =

⌊(n−1)/s⌋
∑

k=0

Bk (cks+1 − aks(γ + ψ(ks + 1) − log z))

zk+ρ+σ

+
n−1
∑

k=K

Dk

zk/s+ρ+σ
+ Rn(ρ, σ, s; z),

(14)
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where cks+1 are defined in (9), Bk are given in (12) and the coefficients Dk are defined

by

D−k ≡ a−k
Γ ((k/s) Γ (ρ + σ − k/s)

sΓ (ρ + σ) aρ−k/sbσ
F

(

k/s, σ
ρ + σ

∣

∣

∣

∣

1 − a

b

)

,

Dks+j ≡ aks+j

saρ+k+j/sbσΓ(ρ + σ)
Γ(−k − j/s)Γ(k + j/s + ρ + σ)F

(

−k − j/s, σ
ρ + σ

∣

∣

∣

∣

1 − a

b

)

,

for j = 1, . . . , s − 1, and

Dks ≡ aks(ρ + σ)k(−1)k

sk!aρ+kbσ

[

F ′

(

−k, σ
ρ + σ

∣

∣

∣

∣

1 − a

b

)

+ F

(

−k, σ
ρ + σ

∣

∣

∣

∣

1 − a

b

)

×

(ψ(k + 1) − ψ(ρ + σ + k) + log a)

]

.

Here, F ′

(

γ, β
δ

∣

∣

∣

∣

z

)

is the derivative of the Gauss hypergeometric function with respect

to the parameter γ. The remainder term Rn(ρ, σ, s; z) is given in (13).

Proof. The proof is the same as in theorem 2, but replacing h(t) = (ts/z + 1)−ρ by

h(t) = (ts/z + a)−ρ(ts/z + b)−σ. ⊔⊓
At this moment, expansions (3), (8), (11) and (14) are only formal asymptotic

expansions for large z. In the following theorem we show that these expansions are in

fact asymptotic expansions for large z.

Theorem 5. In the region of validity of the expansions (3), (8), (11) and (14), the

remainder terms Rn(ρ, s; z) and Rn(ρ, σ, s; z) in these expansions satisfy,

|Rn(ρ, s; z)| ≤ Cn

|z|(n+α−1)/s+ρ
, |Rn(ρ, σ, s; z)| ≤ Cn

|z|(n+α−1)/s+ρ+σ
(15)

if 0 < α < 1 and

|Rn(ρ, s; z)| ≤ Cn log |z|
|z|n/s+ρ

, |Rn(ρ, σ, s; z)| ≤ Cn log |z|
|z|n/s+ρ+σ

(16)

if α = 1, where the constants Cn are independent of |z|.
Proof. From [[9], theorem 5] we have that, for 0 < α < 1, |fn,n(t)| ≤ C1,nt−α ∀
t ∈ [0,∞), where C1,n is any positive constant. On the other hand,

dn

dtn

[

1

(ts/z + 1)ρ

]

=
1

zn/s

dn

dtn

[

1

(ts + 1)ρ

]

(17)

and
dn

dtn

[

1

(ts/z + a)ρ(ts/z + b)σ

]

=
1

zn/s

dn

dtn

[

1

(ts + a)ρ(ts + b)σ

]

. (18)
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Then, from (4) we obtain

|Rn(ρ, s; z)| ≤ C1,n

|z|n/s+ρ

∫ ∞

0

t−α

∣

∣

∣

∣

dn

dtn

[

1

(ts + 1)ρ

]∣

∣

∣

∣

dt,

and, from (13)

|Rn(ρ, σ, s; z)| ≤ C1,n

|z|n/s+ρ+σ

∫ ∞

0

t−α

∣

∣

∣

∣

dn

dtn

[

1

(ts + a)ρ(ts + b)σ

]∣

∣

∣

∣

dt,

which provides (15) with the obvious definition of Cn in each case.

For α = 1, from [[9], theorem 5] we have |fn,n(t)| ≤ C2,nt−α ∀ t ∈ [t0,∞) and

|fn,n(t)| ≤ C3,n(| log t| + 1) ∀ t ∈ [0, t0], where t0, C2,n and C3,n are certain positive

constants. Dividing the integration interval [0,∞) in the definition (4) of Rn(ρ, s; z) at

the point t0 and using (17) and these bounds in each of the intervals [0, t0] and [t0,∞),

we obtain the first bound in (16). Using the above mentioned argument and (18) in

(13), we obtain the second bound in (16). ⊔⊓
The previous theorem does not offer an accurate bound for the remainder in the

expansions. Accurate error bounds are obtained in the following propositions for the

expansions in theorems 1 and 2 if the bound |fn(t)| ≤ cnt−n−α holds ∀ t ∈ [0,∞).

Proposition 1. If, for 0 < α < 1, the remainder fn(t) in the expansion (2) satisfies the

bound |fn| ≤ cnt−n−α ∀ t ∈ [0,∞) for some positive cn. Then, the remainder Rn(ρ, s; z)

in the expansion (3) satisfies the bound

|Rn(ρ, s; z)| ≤ cnπCM(α, r, ρ)

| sin(πα)|Γ(n + α)|z|(n+α−1)/s+ρ
, (19)

where 0 < r < min{
∣

∣ℑ(z1/s)
∣

∣ ,
∣

∣ℑ((−z)1/s)
∣

∣}. The constant C is a bound for

(w + 1)sρ/(ws + 1)ρ in its analyticity region as a function of w, W1, given in Fig 1(a).

The remainder Rn(ρ, σ, s; z) in the expansion (11) satisfies the bound

|Rn(ρ, σ, s; z)| ≤ cnπC̃M(α, r̃, ρ + σ)

| sin(πα)|Γ(n + α)|z|(n+α−1)/s+ρ+σ
, (20)

where 0 < r̃ < min{
∣

∣ℑ(z1/s)
∣

∣ ,
∣

∣ℑ((−az)1/s)
∣

∣ ,
∣

∣ℑ((−bz)1/s)
∣

∣}. The constant C̃ is a

bound for (w + 1)s(ρ+σ)/((ws + a)ρ(ws + b)σ) in its analyticity region as a function of

w, W2, given in Fig 1(b), and

M(α, r, ρ) =
(1 − r)1−α−ρs

rn
n!(ρs)(α−1) −

r

n + 1
(ρs)(α+n)F

(

1, α + n + ρs
2 + n

∣

∣

∣

∣

r

)

. (21)

Proof. Introducing the bound |fn| ≤ cnt−n−α in the definition (5) of fn,n(t) we have

|fn,n(t)| ≤ cnΓ(α)

Γ(n + α)tα
∀ t ∈ [0,∞). (22)
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On the other hand we write

1

(ts/z + 1)ρ
=

1

(tz−1/s + 1)sρ
φ(tz−1/s), φ(w) ≡ (w + 1)sρ

(ws + 1)ρ
.

Then

∣

∣

∣

∣

dn

dtn

[

1

(ts/z + 1)ρ

]
∣

∣

∣

∣

≤ 1

|z|n/s

n
∑

j=0

(

n

j

)

(sρ)j

(tz−1/s + 1)sρ+j
|φ(n−j)(tz−1/s)|. (23)

Using the Cauchy formula for the derivative of an analytic function we obtain

|φ(n−j)(tz−1/s)| ≤ C
(n − j)!

rn−j
.

Formula (19) follows after introducing this bound in (23) and using this last bound in

the definition (4) of Rn(ρ, s; z).

Im(ω)

e(ω)


Rrr

Im(ω)

e(ω)


Rrr

ω1 ω2
ω3 ω2

ω1

(a) (b)

Figure 1. (a) Region W1 considered in (19) in proposition 1, where ω1 = −z1/s and ω2 =

(−z)1/s. (b) Region W2 considered in (20) in proposition 1, where ω̃1 = −z1/s, ω̃2 = (−az)1/s

and ω̃3 = (−bz)1/s.

To obtain (20), we write

1

(ts/z + a)ρ(ts/z + b)σ
=

φ̃(tz−1/s)

(tz−1/s + 1)s(ρ+σ)
, φ̃(w) ≡ (w + 1)s(ρ+σ)

(ws + a)ρ(ws + b)σ
.

Then

∣

∣

∣

∣

dn

dtn

[

1

(ts/z + a)ρ(ts/z + b)σ

]
∣

∣

∣

∣

≤ 1

|z|n/s

n
∑

j=0

(

n

j

)

(s(ρ + σ))j

(tz−1/s + 1)s(ρ+σ)+j
|φ̃(n−j)(tz−1/s)|.

(24)
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Using the Cauchy formula for the derivative of an analytic function we obtain

|φ̃(n−j)(tz−1/s)| ≤ C̃
(n − j)!

r̃n−j
.

Formula (20) follows after introducing this bound in (24) and using this last bound in

the definition (13) of Rn(ρ, σ, s; z). ⊔⊓
Proposition 2. Suppose that, for α = 1, each remainder fn(t) in the expansion (2)

satisfies the bound |fn| ≤ cnt−n−1 ∀ t ∈ (0,∞) for some positive cn. Then,

The remainder Rn(ρ, s; z) in the expansion (8) satisfies the bound

|Rn(ρ, s; z)| ≤ c̄nπCM(1/2, r, ρ)

Γ(n + 1/2)|z|(n−1/2)/s+ρ
, (25)

where c̄n ≡ Max{cn, cn−1 + |an−1|}, and r, C and M(1/2, r, ρ) are given in proposition

1. It also satisfies the bound

|Rn(ρ, s; z)| ≤ C

|z|n/s+ρ

{

1

(n − 1)!
[(cn−1 + |an−1|) ε + cn]M(1, r, ρ)

+
cn

n!

n
∑

j=0

(

n

j

)

(n − j)!(sρ)j

rn−j
Θj(z

−1/s, ε, ρ)







,

(26)

where ε is an arbitrary positive number, and

Θj(x, ε, ρ) ≡















21−j−sρ

sρ + j − 1
− log(ε|x|) if ε|x| < 1

1

sρ + j − 1
(1 + ε|x|)1−j−sρ

if ε|x| ≥ 1.

(27)

For enough small x and fixed n, the optimum value for ε is given by

ε =
cn

n(cn−1 + |an−1|)
. (28)

The remainder Rn(ρ, σ, s; z) in the expansion (14) satisfies the bound

|Rn(ρ, σ, s; z)| ≤ c̄nπC̃M(1/2, r̃, ρ + σ)

Γ(n + 1/2)|z|(n−1/2)/s+ρ+σ
, (29)

where r̃, C̃ are given in proposition 1. It also satisfies

|Rn(ρ, σ, s; z)| ≤ C̃

|z|n/s+ρ+σ

{

1

(n − 1)!
[(cn−1 + |an−1|) ε + cn] M(1, r̃, ρ + σ)

+
cn

n!

n
∑

j=0

(

n

j

)

(n − j)!(s(ρ + σ))j

r̄n−j
Θj(z

−1/s, ε, ρ + σ)







(30)



10

Proof. From [[9], proposition 2] we have

|fn,n(t)| ≤ 1

(n − 1)!

[

(cn−1 + |an−1|) log
(ε

t

)

+
cn

ε

]

∀ t ∈ [0, ε], (31)

where ε > 0 is a fixed point, and

|fn,n(t)| ≤ cn

n!

1

t
∀ t ∈ [0,∞). (32)

We divide the integral in the right hand side of (4) at the point t = ε > 0. On

the one hand we use the bound (32) for fn,n(t) in the integral over [ε,∞) and the

bound (31) in the integral over [0, ε]. On the other hand we use again the bound

for dn(1/(ts/z + 1)ρ)/dtn given in (23). Then, we obtain (26) after straightforward

computations. Similarly, we use dn(1/((ts/z + a)ρ(ts/z + b)σ))/dtn given in (24) to

obtain (30). For large t and fixed n, this bound takes its optimum value for ǫ given in

(28) [[9], proposition 2].

For deriving (25)-(29), we use that fn(t) satisfies the bound required in proposition

1 with α = 1/2 and cn replaced by c̄n [[9], proposition 2]. ⊔⊓

3. Numerical experiments

3.1. The tadpole in the theory of the scalar field in 3 + 1 dimensions

The mass renormalization of the scalar field in 3+1 dimensions regularized by means

of high derivatives [[5], chap. 4, sec. 4] requires the calculation of the integral

Is,ρ(m, Λ) ≡ 2s

m4

∫ ∞

0

p3dp

(p2 + m2)(p2s + Λ2s)ρ
,

where m is the bare mass of the scalar field, Λ is the regulator parameter and the

parameters ρ > 0 and s ∈ N| verify sρ > 1. Physical observables are defined for large

values of the regulator parameter and then, an approximation of the integral for large

values of Λ is required. By means of a simple change of variable, this integral reads

Is,ρ(m, Λ) ≡ s

m4

∫ ∞

0

tdt

(t + m2)(ts + Λ2s)ρ
.

Therefore, up to a factor, it has the form considered in theorem 2 with z ≡ Λ2s and

f(t) ≡ t

t + m2
=

n−1
∑

k=−1

(−m2)k+1

tk+1
+ fn(t), t → ∞. (33)
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Then, the asymptotic expansion of f(t) for large t has the form considered in theorem

2 with K = −1 and ak = (−m2)k+1. Then, applying theorem 2 we have

Is,ρ(m, Λ) =
s

m4







⌊n/s−1⌋
∑

k=0

s−1
∑

j=1

(−m2)ks+j+1 Γ(−k − j/s)Γ(k + j/s + ρ)

sΓ(ρ)Λ2s(k+j/s+ρ)
+

⌊(n−1)/s⌋
∑

k=0

(−ρ

k

)

1

Λ2s(k+ρ)

[

cks+1 + (−m2)ks+1

(

ψ(k + ρ) + ψ(k + 1)

s
+ log Λ2 − ψ(ks + 1) − γ

)]

+
−1
∑

k=K

(−m2)k+1 Γ(−k/s)Γ(k/s + ρ)

sΓ(ρ)Λ2s(k/s+ρ)
+ Rn(ρ, s; Λ)

}

,

(34)

where, using (9), ck are given by

ck+1 = (−m2)k+1
(

γ + ψ(k + 1) − log m2
)

.

On the other hand, the function (33) verifies the error test and then |fn(t)| ≤
m2(n+1)t−n−1. Therefore, we apply proposition 2 to obtain two different bounds, (25)

and (26) where cn−1 = 0 and cn = m2(n+1). These bounds show that the expansion

(34) is convergent for m < Λ if ρ ≥ 1 and for m ≤ Λ if ρ < 1.

2nd order Relative Rel. er. 4th order Relative Rel. er.

Λ2 I2,2(1,Λ) approx. error bound approx. error bound

54 86177.578 86127.772 0.0006 0.04 86177.7 1.977e-6 0.004
104 1488.239 1488.2217 1.2e-5 6.8e-5 1488.239 1.8e-9 3.6e-6
154 134.05817 134.058 1.2e-6 6.e-5 134.05817 3.6e-11 6.3e-8
204 24.114217 24.1142 2.3e-7 1.e-5 24.114217 2.2e-12 2.e-9
254 6.356105 6.356105 6.5e-8 3.e-6 6.356105 4.5e-13 3.9e-10

Table 1: Second, third and sixth columns represent 109I2,2(1, Λ), approximation (34) for n = 2

and approximation (34) for n = 4 respectively. Fourth and seventh columns represent the absolute

value of the respective relative errors in (34). Fifth and last columns represent the respective error

bounds given by Min{(25),(26)}.

3.2. The third symmetric elliptic integral with two parameters large

The third symmetric standard elliptic integral is defined by [[15], chap 12]

RJ(x, y, z, p) =
3

2

∫ ∞

0

dt
√

(t + x)(t + y)(t + z)(t + p)
,

where the parameters x, y, z and p are nonnegative. The integral (2/3)RJ(x, az, bz, p)

with z large (and |az| ≤ |bz|) has the form considered in theorem 3 with s = 1, ρ = σ =
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α = 1/2, K = 1 and

f(t) =
1√

t + x(t + p)
=

n−1
∑

k=1

ak

tk+1/2
+ fJ

n(t).

Therefore, the asymptotic expansion of (2/3)RJ(x, az, bz, p) for large z follows from

eq. (11) in theorem 3. Coefficients ak are trivially given by,

ak = (−1)k−1
k

∑

j=0

(1/2)j

j!
xjpk−j−1. (35)

The Mellin transform M [f ; k + 1] in formula (11) can be obtained from [[14], p. 303,

eq. 24]. Therefore, applying theorem 3 we obtain

RJ(x, az, bz, p) =
3

2

{

n−1
∑

k=1

Ak(a, b)

zk+1/2
+

n−1
∑

k=0

Bk(a, b)xk+1/2k!Γ(1/2 − k)

p
√

πzk+1

×F

(

k + 1, 1
3/2

∣

∣

∣

∣

1 − x

p

)

+ RJ

n((x, az, bz, p)

}

,

(36)

where the coefficients Ak(a, b) and Bk(a, b) are given by

Ak(a, b) = ak
Γ (1/2 − k) Γ (1/2 + k)

akb1/2
F

(

1/2 − k, 1/2
1

∣

∣

∣

∣

1 − a

b

)

,

Bk(a, b) =
2(−1)k

k!ak+1/2b1/2
F

(

−k, 1/2
1

∣

∣

∣

∣

1 − a

b

)

.

On the other hand, the function f(t) satisfies the condition fn(t) ≤ cnt−n−1/2 of

proposition 1 with cn = |an|. Then, for x, p, az, bz ∈ C/ \ R| − and n = 1, 2, 3, ..., the

bound (20) holds for RJ(x, az, bz, p) setting s = 1, ρ = σ = α = 1/2 and cn = |an| given

in (35). Therefore,

|RJ

n(x, az, bz, p)| ≤ |an|πC̃M(1/2, r̃, 1)

Γ(n + 1/2)|z|n+1/2
, (37)

where 0 < r̃ < min{|ℑ(z)| , |ℑ((−az))| , |ℑ((−bz))|}, and C̃ and M(1/2, r̃, 1) are given

in proposition 1.

2nd order Relative Rel. er. 3rd order Relative Rel. er.

z RJ(1, az, bz,2) approx. error bound approx. error bound

10 0.0896732 0.0680162 0.157 0.9 0.0868656595 0.0277 0.3
- 0.1176762i - 0.1261349i - 0.1146834i

50 0.01901547 0.0185433 0.01 0.06 0.0190047 0.0005 0.004
-0.0327173i -0.0328573i -0.0327039i

100 0.0094934 0.0094057 0.004 0.02 0.0094925 8.e-5 6.5e-4
-0.01776i -0.0177839i -0.017759i

500 0.00186473 0.001863 4.e-4 1.8e-3 0.0018647 1.4e-6 1.e-5
-0.003971997i -0.00397239i -0.00397199i

1000 0.00092517 0.00092487 1.e-4 6.e-4 0.00092517 2.3e-7 1.8e-6
-0.00203988i -0.0020399i -0.00203988i
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Table 3. Numerical example of the approximation (36). Second, third and sixth columns represent

RJ(1, az, bz, 2) for a = eiπ/4 and b = eiπ/2, approximation (36) for n = 2 and approximation

(36) for n = 3 respectively. Fourth and seventh columns represent the respective relative errors in

(36). Fifth and last columns represent the respective error bounds given by eq. (37).
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