Approximations of Stieltjes transforms for

large values of the transformation parameter

Chelo Ferreira® and José L. Lépez?

L Departamento de Matematica Aplicada,
Universidad de Zaragoza, 50013-Zaragoza, Spain. e-mail: cferrei@unizar.es.

2 Departamento de Matemdtica e Informatica,
Universidad Publica de Navarra, 31006-Pamplona, Spain. e-mail: jl.lopez@unavarra.es.

ABSTRACT

Asymptotic expansions of Stieltjes and generalized Stieltjes transforms of functions
having an asymptotic expansion in negative integer powers of their variable have been
exhaustively investigated by J. P. McClure and R. Wong. In this paper we obtain
asymptotic expansions of more general Stieljes transforms: fooo f()/(t° + z)Pdt for
large 2, and [~ f(t)/((t* + 2)?(t* + w)?)dt for large z and w. Error bounds are
obtained at any order of the approximation for a large family of integrands.
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1. Introduction

The generalized Stieltjes transform of a locally integrable function f(¢) on [0, 00) is
defined by the integral [[17], chap. §]

R B 4 1))
S(P,Z)Z/O mdt,

where z is a complex variable in the cut plane |arg(z)| < 7 and p > 0. If f(¢) ~ O(t™%)
as t — oo, then a 4+ p > 1 is required. The standard Stieltjes transform corresponds
with p = 1.

When

oo
F&) ~ > axt™he, t — o0,
k=0



where 0 < o <1 and {ax, k =0,...,00} is a sequence of complex numbers, asymptotic
expansions of S(1;z) and, in general, of S(p;z) for large values of z have been derived
by R. Wong. An asymptotic expansion of S(1; z) is obtained by using the distributional
approach [[16], chap. 6], whereas Mellin transforms techniques are used in [12] to derive
an asymptotic expansion of S(p; z).

These expansions have been used in [10] and [11] to obtain uniform and nonuniform
asymptotic expansions of symmetric standard elliptic integrals for real values of their
parameters.

On the other hand, mathematical calculations in Quantum Mechanics and in Quan-
tum Field Theory require the computation or, at least, the approximation of integrals
of the form

Y Ry () , _ [~ f(t)
Ss(p,z)—/o Tt Ss(p,z,w)—/o e o O

where s is a positive integer and

F6) = 3 a0 fu(t), @)
k=K

where 0 < a <1, K€ Z ap, k=K, K+ 1, K+ 2,... is a sequence of complex numbers
and f,(t) = O(t~"~%) as t — oo. This kind of integrals appears in one-loop calculations
of physical observables and effective actions in Quantum Field Theory, where f(t) is
a rational function [[7], chap. 8, sec. 4.2], [[8], chap. 10, sec. 8]. In particular, as
has been established recently, the determination of the effective Chern-Simons coupling
constant requires the calculation of integrals of the form (1), where z and/or w are large
real parameters [2], [3], [4]. In general, the regularization techniques used to define the
quantum theories require the introduction of a large parameter (regularizator) and then,
the parameters z and/or w in (1) are large [[7], chap. 8, sec. 1], [[8], chap. 7, sec. 5].
On the other hand, the first integral in (1) for s = 2 and p = 1/2 is nothing but the
Glasser transform of f(t) [6], [[17], chap. 27].

In section 2, we derive asymptotic expansion of (1) for large z using a generalization
of the distributional technique of McClure and Wong [[16], chap. 6].

This paper is a strong revised version of [9]. In that paper, after a change of variable,
we replaced ¢° in (1) by t and f(t) by f(t'/%). Then, we introduced a complicated
generalization of McClure and Wongs distributional theory [[16], chap. 6] replacing ¢
by t'/% in (2) in order to apply that theory to the integrals in (1). In this paper we
just show that McClure and Wong’s distributional theory can be applied directly to
the integrals in (1) for any positive integer s (the original theory is formulated only for
s = 1). Therefore, in this paper, we offer simpler expansions than in [9] by means of
much simpler proofs.

In the remaining of the paper empty sums must be understood as zero.



2. Asymptotic expansions

Theorem 1. Let f(t) be a locally integrable function on [0,00) which satisfies (2) with
0<a<l. Then, forz€ C\R , p>0,a+ K +sp>1andn=1,23,..,

= I((1—a—k)/s)D((k+a—1)/s+p)
/0 (ts + 2) Z a sT(p)z(atk=1)/s+p +

2o\ )7 ar o P

where M|f;k + 1] denotes de Mellin transform of f(t) at w =k +1: [;° t“~! f(t)dt or
its analytic continuation at that point. The remainder term is defined by

Bulp,5:2) d; [(ts/z1+ 1) ]dt’ )

where

O / (= " ) )

Proof. Consider the tempered distributions f, tjrk_s, 6®) and f, acting over functions
h(t) € C(*) [[16], chap. 6]:

<f h>= /oo fOR@Yt, < fu,h >= / Frn (O™ (t)dt
0

oo 1 [ee]
<t h >:/ tFont)dt, <t h >= —/ t=*r®(t)dt  (6)
0 (@) Jo

for k =0,1,2,... From [[16], chap 6, lemma 1] we have that these four distributions are
related by the equality:

f= Z agt < Z( kll)kM[f;k+1]5(k) + £, (7)

k=0

where 6() is the k-derivative of the delta distribution at the origin: < ) h >=
(—1)*A*)(0). The third integral in (6) is indeed the Mellin transform of h(t), M[h;w]
atw=k+1—a: < t{‘[a, h >= M[h,k + 1 — a]. Moreover, by integration by parts
it may be proved that the last integral in (6) is the analytic continuation of M [h;w]| to
the point w =1—-k — a.

On the other hand S(p; z), may be written as

o [T LT f(Y)
60 | @t =5 ), et
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Therefore, applying (7) to the function h(t) = (¢t°/2+41) ", and using the above formulas
and [[14], p. 298, eq. 24] we obtain (3)-(4). O
Theorem 2. Let f(t) be a locally integrable function on [0,00) which satisfies (2) with
a=1. Then, forp >0, z€e C\R , 1+ K+sp>1andn=1,23, ..,

[n/s—1] s—1

< f) —k—j/s)L(k +j/s + p)
/o CE=TPY Z* ST(p)Fealere
N o
3 <k>zk—+p[ 5 (k + p) + Y(k+1) +log 2 — sth(ks +1) = 57)|
k=0
—\ T(—k/s)T(k/s+ p)
+kz;<ak SF(p)Zk/S+p +Rn(p75;z)a
(8)
where ci are given by
cuer = Jim, [M1fw4 1]+ 22| 4 an(o -+ 00+ 1), (9

v is the Euler constant and v the digamma function. The remainder term R, (p, s; z)
is given by (4).

Proof. It is similar to the proof of theorem 1. But now, the second line of (6) is
replaced by

o 1 o0
<tk h>= /0 t*h(t)dt, <t h>= _E/o KD () logtdt  (10)

for kK = 0,1,2,.... As in the preceding proof, < t¥ h >= MIh;k + 1]. But now,
< tjrk_l, h > is related to M[h; —k| by means of a more sophisticated formula:

7 (0) |- 1 (0)
k!

<t+k Lh>= hm [ [h;w]—k' (V(k+1)+7),

where M [h;w)] represents indeed the analytic continuation of fooo t*=Lh(t)dt and may

be derived by integration by parts. Using this last formula and the first of (10) for
h(t) = (t*/z 4+ 1)~" we obtain:

T(k/s)D(—k/s + p)
SHsT(p)

<t L h>=

<t s= Zi (_kp> [W(k+p)+(k+1)+logz —si(ks+ 1) — sv]

and
L(—k—j/s)

—ks—j—1 _
<ty h>= F3755T(p)

Dk+j/s+p), j=12,...,s—1



To complete this proof, formula (7) must also be replaced by [[16], chap 6, lemma 2]:

=

S k1, (D) "
f = Zaktl - —I—Z I Ck+1(5( )_|_fn7
k=K k=0

where ¢ are given in (9). O
Theorem 3. Let f(t) be as in theorem 1. Then, for az,bz € ¢\ R, p,o0 > 0,
a+K+s(p+o)>1andn=1,2,3,..,

>0 £ — Ay,
dt =
/o (t5 + az)r(t* + b2)7 ;; SOra—D/stpto

n_1)/s (11)
L vr1 ks + 1] By,

Z Zk—i—p—i—o +R’I’L(p70—787z)

k=0

Here, the coefficients Ay are defined by

AkEakf((l—a—k)/s)F(p+a—(1—a—k)/s)F<(1—a—k:)/s,0'

SF (p_l’_0—> ap+(k+a—1)/sba p+0-

a
1— =
b)’

z> is the Gauss hypergeometric function, and coefficients By, are given

1 %) . (12)

where F < fy;sﬂ

by:
. <_1)k(10+ U)k —k,O’
Bk =
klak+rpo p+o

The remainder term is given by

R G VL dn 1
Bnlp,0,5:2) =~ 22 /0 Fron () G {(ts/z—i-a)/’(ts/z—i-b)f’} at, (13)

where fp n(t) is defined in (5).

Proof. The same proof as in theorem 1, but replacing h(t) = (t5/z +1)~” by h(t) =
(t°/z+a)~P(t°/z + b)~7 and using [[14], p. 303, eq. 24]. ]
Theorem 4. Let f(t) be as in theorem 2. Then, for az,bz € C\ R, p,o > 0,
K+1+s(p+o)>1andn=1,23,..,

00 n—1)/s
/ Q) _ O By (ekast — as(y+ (ks + 1) — log 2))
o (ts 4 az)p(ts 4 bz)a P 2k+pto
. (14)

Dy,
+ Z kjatoto + Rn(p, 0,5;2),
k=K
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where cps11 are defined in (9), By are given in (12) and the coefficients Dy, are defined

by
o DT o —k/s) . (kfsal, _a
k= 0ok sT (p + o) aP=k/sbo p+o b/’
Distj = Dhostj D(—k—j/s)T(k+j/s+p+o)F —k—jlsoly_a
St T sapthtilsheT (p + o) pto b)’

forj=1,...,s—1, and

aialp + (=" [ ( —kyo
sklaptkpe p+o

Dks =

a —k,o
1— - F ’
b>+ <,0+a

(W(k+1)—yY(p+o+k) +loga)}

1—%) X

Here, F' (736

z) is the derivative of the Gauss hypergeometric function with respect

to the parameter . The remainder term R, (p,o,s;z) is given in (13).

Proof. The proof is the same as in theorem 2, but replacing h(t) = (¢*/z + 1)~ by

h(t)=(t*/z+a)"P(t*/z+b)"". 0
At this moment, expansions (3), (8), (11) and (14) are only formal asymptotic

expansions for large z. In the following theorem we show that these expansions are in

fact asymptotic expansions for large z.

Theorem 5. In the region of validity of the expansions (3), (8), (11) and (14), the

remainder terms R, (p, s;z) and R,(p,0,s;z) in these expansions satisfy,

Ch

Qe CUN— Cn
< |z|(nta=1)/s+p”

|Z|(n+oz—1)/s+p+a (15)

|Rn(p, 53 2) |Rn(p,0,s;2)] <

if0 <a<1 and

Cr log 2|
|2|n/ste

C, log |2

|Rn(p,8;2)‘ S | — | ’n/s—i—p—i—o‘

Ra(p, 0, 5:2) (16)
if =1, where the constants C,, are independent of |z|.

Proof. From [[9], theorem 5] we have that, for 0 < a < 1, |fpn(t)] < Cipt™* V
t € [0,00), where C,, is any positive constant. On the other hand,

572 [(t8/21+ 1),)] = Zj/si—: [(tsjl)p] (17)

and

dr 1 ]_1d”

1
i [(ts/z+a)P(t5/z+b)" ] (18)

T on/sdin [(ts + a)P(t +b)7



Then, from (4) we obtain

Ro(p,52)| < b / =
0

ERGEE

dt,

b
dtn | (t5 + 1)
and, from (13)

dar 1

Cin — dt
dt™ | (t° +a)P(t* +b)° ’

oo
. —Q
’Rn(p,O',S,Z)‘ < |Z|n/s+p+0/0 t

which provides (15) with the obvious definition of C), in each case.

For a« = 1, from [[9], theorem 5] we have |f, ,(t)] < Caopnt™* V t € [ty,00) and
| fron(t)] < Csn(llogt| +1) V t € [0,t], where ty, Ca,, and Cs,, are certain positive
constants. Dividing the integration interval [0, 00) in the definition (4) of R, (p, s; z) at
the point ¢y and using (17) and these bounds in each of the intervals [0, to] and [tg, 00),
we obtain the first bound in (16). Using the above mentioned argument and (18) in
(13), we obtain the second bound in (16). O

The previous theorem does not offer an accurate bound for the remainder in the
expansions. Accurate error bounds are obtained in the following propositions for the
expansions in theorems 1 and 2 if the bound |f,,(t)| < ¢,t~" "% holds V ¢ € [0, c0).

Proposition 1. If, for 0 < a < 1, the remainder f,(t) in the expansion (2) satisfies the
bound | f,]| < c,t™""*V t € [0,00) for some positive c,,. Then, the remainder R, (p, s; z)
in the expansion (3) satisfies the bound

< cnmCM (e, 7, p)
= |sin(ra)|T(n + a)|z|(vte—1)/s+p’

| Rn(p; 53 2) (19)
where 0 < r < min{‘%(zl/s)’ ) ’S((—z)l/s)‘}. The constant C' is a bound for
(w+ 1)%° /(w® + 1)? in its analyticity region as a function of w, Wy, given in Fig 1(a).
The remainder R, (p,o,s;z) in the expansion (11) satisfies the bound

camCM(a, 7, p+ o)

Rn Y Y 7 S . Y
‘ (P 0,5 z)| ’sHl(WOz)’F(TL—Fa)‘z|(n+a_1)/s+p+a

(20)
where 0 < 7 < min{‘%(zl/s)‘ , ’%((—az)l/s)‘,‘S((—bz)l/s)‘}. The constant C is a

bound for (w4 1)5°+9) /(w® 4 a)P(w® + b)?) in its analyticity region as a function of
w, Wa, given in Fig 1(b), and
r) . (21)

Proof. Introducing the bound |f,| < ¢,t7"~ in the definition (5) of f,, ,,(t) we have

(1 _ T,)l—a—ps

,
M) = L ) ) = (05w P

l,a+n+ ps
2+n

enl(@)
Frin )] <

e A U0k (22)



On the other hand we write

1 1

= Z—l/s w
(ts/z+1)P N (tz—Ys + 1)8p¢(t ), P(w)

(w4 1)
(w + 1"

Then

n

1 n (5p); (n—4) (4, 1/
> (5 oD (23)

<
> |z|n/s = j tz—1/s + 1)sp+]

dr 1
dtr | (t5/z + 1)r
Using the Cauchy formula for the derivative of an analytic function we obtain

|¢(n_j)(t2’_1/s)| < C(n - ])' ]

= ’I"n_j

Formula (19) follows after introducing this bound in (23) and using this last bound in
the definition (4) of R, (p, s; 2).

(a) (b)
Figure 1. (a) Region W, considered in (19) in proposition 1, where w; = —2z'/* and wy =
(—2)/*. (b) Region Wy considered in (20) in proposition 1, where &y = —2z/%, &y = (—az)'/*

and &3 = (—bz)'/*.

To obtain (20), we write

| d(t="1/%) : (w + 1)*(0+o)

(t5/z+a)yp(t5/z+b)°  (tz—1/s + 1)s(pt0)’ olw) = (ws + a)P(ws + b)o"

Then

1 ™ /n (s(p+0)); i) (sm1/s
< BRE ZO ( ) (tz—1/5 + 1)s(p+o)+i o) (¢ %))

i v e 2\
(24)



Using the Cauchy formula for the derivative of an analytic function we obtain

69 (1~ Vo) < ¢

Formula (20) follows after introducing this bound in (24) and using this last bound in
the definition (13) of R, (p, 0, s; z). O
Proposition 2. Suppose that, for « = 1, each remainder f,(t) in the expansion (2)
satisfies the bound |fn| < c,t "1 V t € (0,00) for some positive c,,. Then,

The remainder R, (p,s;z) in the expansion (8) satisfies the bound

< nmCM(1/2,7, p)
>~ F(n+ 1/2)‘Z|(n—1/2)/s+p7

|Rn(p, 83 2) (25)

where ¢, = Max{cy, ¢n—1 + |an—1]}, and r, C and M(1/2,r, p) are given in proposition
1. It also satisfies the bound

C 1
[Rn(p, s:2)| < EREa { (n—1)! [(en—1+ lan—1]) € + cu] M(1,7, p)
n . (26)
_|_C_ﬂ <n> (n_]>!(3p)j@j(z—1/s’€’p) ’
n! 4 J rn=J
7=0
where € is an arbitrary positive number, and
21—j—sp
ot log(e|x]) if elz| <1
0w ep) =1 Pt . (21)
—— (L +elz)) T i elz| > 1.
o (L el E
For enough small x and fized n, the optimum value for € is given by
C’n
€= . 28
R(onor + Jan]) (28)
The remainder R, (p,o,s;z) in the expansion (14) satisfies the bound
. enmCM(1/2,7,p+ 0)
|Rn(p,0,8;2)] < T(n+ 1/2)|Z’(n—1/2)/8+p+o’7 (29)
where T, C are given in proposition 1. It also satisfies
< C 1 )
‘R'ﬂ(pv g,8; Z)| — ‘Z|n/s+p+o (n _ 1)‘ [(C”*1 + |a”*1|) €+ CTL] M(l) Y + 0)
(30)

+c_nj0 (RLESLECEL PR

n! j Fn—J
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Proof. From [[9], proposition 2] we have

[fan ()] < [(Cnfl + |an—1]) log (€> + %”} Y te0,¢], (31)

(n—1)! t

where € > 0 is a fixed point, and
[fan @ < 55 vV  te[0,00). (32)

We divide the integral in the right hand side of (4) at the point ¢ = ¢ > 0. On
the one hand we use the bound (32) for f, ,(t) in the integral over [e,00) and the
bound (31) in the integral over [0,e]. On the other hand we use again the bound
for d™(1/(t°/z + 1)?)/dt™ given in (23). Then, we obtain (26) after straightforward
computations. Similarly, we use d"(1/((t°/z + a)?(t*/z + b)?))/dt"™ given in (24) to
obtain (30). For large t and fixed n, this bound takes its optimum value for € given in
(28) [[9], proposition 2].

For deriving (25)-(29), we use that f,(¢) satisfies the bound required in proposition
1 with a = 1/2 and ¢, replaced by &, [[9], proposition 2]. O

3. Numerical experiments

3.1. The tadpole in the theory of the scalar field in 3 + 1 dimensions

The mass renormalization of the scalar field in 3+ 1 dimensions regularized by means
of high derivatives [[5], chap. 4, sec. 4] requires the calculation of the integral

25 [ p3dp
Loplm, A) = 2 /o (p? +m?)(p** + A*)r’

where m is the bare mass of the scalar field, A is the regulator parameter and the
parameters p > 0 and s € N verify sp > 1. Physical observables are defined for large
values of the regulator parameter and then, an approximation of the integral for large
values of A is required. By means of a simple change of variable, this integral reads

s [ tdt
I, ,(m,A) = — .
m(m ) m4/0 (t+m2)(t5+A23)p

Therefore, up to a factor, it has the form considered in theorem 2 with z = A?* and

B ¢ n—1 (_mQ)k+1
0= = X S A, o &
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Then, the asymptotic expansion of f(¢) for large ¢ has the form considered in theorem
2 with K = —1 and ap = (—m?)**!. Then, applying theorem 2 we have

[n/s—1] s—1 . .
_5 ovkstj1 L (—k —J/s)L(k+j/s+p)
I ,(m, A) A kzo z;(m )t T (o) AT/ +7) +
= ]:

L(n—1)/s]
— k k
kz_o < kP) A2S(1k_+p) {cksﬂ + (—m?)kst! <¢( +0) ?Z)( +1) +log A* — (ks +1) — 7)}

-1

ok L(=k/s)T(k/s
" k:ZK(_m " («SF(f/))z)Ps((k//sJ:)p) +Rn(PvS;A)},

(34)
where, using (9), ¢ are given by

crsr = (—m2)EH (y + 9k + 1) — logm?)

On the other hand, the function (33) verifies the error test and then |f,(t)] <
m2(th¢=n=1 " Therefore, we apply proposition 2 to obtain two different bounds, (25)
and (26) where ¢,,_1 = 0 and ¢, = m2(+t1) - These bounds show that the expansion

(34) is convergent for m < Aif p > 1 and for m < Aif p < 1.

2nd order | Relative | Rel. er. | 4th order | Relative | Rel. er.
A% | I52(1,A) |approx. error bound |approx. error bound

54 | 86177.578 | 86127.772 0.0006 0.04 86177.7|1.977e-6 0.004
10% | 1488.239 | 1488.2217 1.2e-5| 6.8e-5| 1488.239 1.8e-9| 3.6e-6
154 | 134.05817 134.058 1.2e-6 6.e-5|134.05817 | 3.6e-11| 6.3e-8
20% | 24.114217 24.1142 2.3e-7 l.e-5(24.114217| 2.2e-12 2.e-9
25%| 6.356105| 6.356105 6.5e-8 3.e-6 | 6.356105| 4.5e-13| 3.9e-10

Table 1: Second, third and sixth columns represent 10°I5 2(1, A), approximation (34) forn = 2
and approximation (34) for n = 4 respectively. Fourth and seventh columns represent the absolute

value of the respective relative errors in (34). Fifth and last columns represent the respective error
bounds given by Min{(25),(26)}.

3.2. The third symmetric elliptic integral with two parameters large
The third symmetric standard elliptic integral is defined by [[15], chap 12]

3 [ dt
R,(z,y,2,p) = 5/0 Vit+ o)t y)t+2)(t+p)

where the parameters z, y, z and p are nonnegative. The integral (2/3)R,(z, az,bz,p)
with z large (and |az| < |bz|) has the form considered in theorem 3 with s =1, p=0 =



a=1/2, K =1 and

ft) =

1
ViE+x(t + p)

Therefore, the asymptotic expansion of (2/3)R

n—1

ag
tk+1/2

+ [ (@)

eq. (11) in theorem 3. Coefficients ay are trivially given by,

The Mellin transform M|f;k + 1] in formula (11) can be obtained from [[14], p. 303,

ak——

OM?T

1/2

eq. 24]. Therefore, applying theorem 3 we obtain

R,(z,az,bz,p) = 2{2

n—1

kE+1,1
3/2

Ak CL b
Zk+1/2

-

n—1

k]l

s(z,az,bz,p) for large z follows from

(35)

k(a, D)zF 2RI (1/2 — k)

Ly

k=0
T

p

py/mai !

where the coefficients Ay (a,b) and By(a,b) are given by

proposition 1 with ¢, =

Ak (a, b) =

n (35). Therefore,

where 0 < 7 < min{|(2)], |S((—az2))], |S((=bz2))|},

in proposition 1.

D(1/2=k)D1/2+k)
akpl/2
kK

|an].

R, (x,az,bz,p)| <

k'ak+1/2bl/2

g
F(—k:,l/Q

On the other hand, the function f(t) satisfies the condition f,(t) < c,t~""%/? of
Then, for z,p,az,bz € C\R™ and n = 1,2,3,..., the
bound (20) holds for R,(x,az,bz,p) setting s =1, p=0c=a=1/2 and ¢, =

1/2—k,1/2‘
1

a
1——.

|ty |[TCM(1/2,7,1)

[(n + 1/2)| 172"
and C and M(1/2,7, 1) are given

) + Ry ((z, az,bz,p)},

a
1——
b)’

2nd order Relative | Rel. er. | 3rd order Relative | Rel. er.
z Rjy(1,az,bz,2) | approx. error bound | approx. error bound

10 0.0896732 0.0680162 0.157 0.9 0.0868656595 0.0277 0.3
- 0.1176762i | - 0.1261349i - 0.1146834i

50 0.01901547 0.0185433 0.01 0.06 0.0190047 | 0.0005 0.004
-0.0327173i| -0.0328573i -0.0327039i

100 0.0094934 0.0094057 0.004 0.02 0.0094925 8.e-5| 6.5e-4
-0.01776i | -0.0177839i -0.017759i

500 0.00186473 0.001863 4.e-4| 1.8e-3 0.0018647 1.4e-6 l.e-5
-0.003971997i | -0.00397239i -0.00397199i

1000 0.00092517 | 0.00092487 l.e-4 6.e-4 0.00092517 2.3e-7| 1.8e-6
-0.00203988i | -0.0020399i -0.00203988i

|an| given
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Table 3. Numerical example of the approximation (36). Second, third and sixth columns represent
R,(1,az,bz,2) fora = e'™/* and b = €'™/2, approximation (36) for n = 2 and approximation
(36) for n = 3 respectively. Fourth and seventh columns represent the respective relative errors in
(36). Fifth and last columns represent the respective error bounds given by eq. (37).
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