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ABSTRACT

The Lauricella hypergeometric function F[,(a,b1,...,by;c; 21, ..., 2,) with 7 € N,
is considered for large values of one variable: x1, or two variables: x; and z2. An
integral representation of this function is obtained in the form of a generalized Stieltjes
transform. Distributional approach is applied to this integral to derive four asymptotic
expansions of this function in increasing powers of the asymptotic variable(s) 1 — z;
or 1 —xq and 1 — x5. For certain values of the parameters a, b; and ¢, two of
these expansions also involve logarithmic terms in the asymptotic variable(s). For
large x1, coefficients of these expansions are given in terms of the Lauricella hyperge-
ometric function Fgfl(a, ba,...,bp;¢;xa,. .., ) and its derivative with respect to
the parameter a, whereas for large x1 and xo those coefficients are given in terms of
F{;2(a, bs,...,br;¢;x3,...,o,) and its derivative. All the expansions are accom-
panied by error bounds for the remainder at any order of the approximation. Numerical
experiments show that these bounds are considerably accurate.

2000 Mathematics Subject Classification: 41A60 33C65

Keywords & Phrases: Lauricella hypergeometric function, asymptotic expansions, dis-
tributional approach, generalized Stieltjes transforms.



1. Introduction

The Lauricella hypergeometric function FJ(a,by,...,by;¢; 21, ..., 2,) is defined by
means of the multiple power series [7]

T . e
Fr(a,by, ... ,byyc5m, ... xp)

[e.e]

oo
a b < (br)m, .
E ce E ( )?(7;1)+ :—m—:( 17);;1' - '7(nr?m7 lﬂl’ﬂl .. .x?’bv-7 |xz| <l,1=1,2,..,m.
m1=0 Ty ’ "

m,=0

Two important particular cases of this function are the case r = 1: the Gauss hyperge-
ometric function, and the case r = 2: the Appell function.

The Lauricella function has several applications in mathematical physics due to its
role in the theory of Lie group representations [13] and its astrophysical and quantum
chemical applications [21]. There is an extensive mathematical literature devoted to
the study of these functions: Srivastava derived polynomial expansions of the Lauricella
functions using expansions involving Bessel functions [22]. Integral formulas involving
the Lauricella functions are established in [18]. The behavior of F3 near certain of
its logarithmic singularities is analyzed in [17]. Several formulas involving series and
integrals of the Lauricella functions and their application to derive bilateral and bilinear
generating functions of Jacobi, Laguerre and Sylvester polynomials are derived in [12].
In [1], a family of generalized elliptic-type integrals is introduced, which admits an
explicit representation in terms of the Lauricella function. Carlson explains how the
Lauricella hypergeometric function is connected with symmetric elliptic integrals and
their advantages for numerical and symbolic integration [3]. The Lauricella functions
have also probabilistic interpretations, which arise from the evaluation of certain product
moments of some multivariate distributions. It is shown that those product moments
may be expressed as transformations on the Lauricella functions [15]. Other specific
probabilistic and statistic problems are studied in [11]. Generalized hypergeometric
functions of several variables are needed to study Goursat-Darboux problems for third-
order differential equations [4]. A comprehensive reference to the Lauricella function is
[19].

Approximations of the Lauricella functions have been investigated by many authors:
Complete power series expansions at x; =0, 7=1,2,3,...,7 — 1 of FJ, in terms of prod-
ucts of the Gauss hypergeometric function and Fgfl have been obtained by Srivastava
and Goyal [20], and later extended by Joshi [6]. Approximations by using branched
continued fractions are studied in [14]. Zamel, Tuan and Kalla have obtained asymp-
totic expansions of Fp when one of its variables approaches 1 in terms of multiple
series involving elementary functions [1]. On the other hand, asymptotic expansions of
these functions for large values of the variables have not been exhaustively investigated.
Complete convergent expansions of F, have been obtained by Carlson using Mellin
transforms techniques [2]. Although these expansions have an attractively simple struc-
ture, explicit computation of the terms of the expansions is not straightforward and the
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upper bound on the truncation error is not quite satisfactory [[2], sec. 5]. Asymptotic
approximations of a class of generalized hypergeometric functions, which includes FT,
may be found in [4]. In this paper we consider the problem of finding complete asymp-
totic expansions of F7J,(a,b1,...,by;c;x1,. .., x,) for large values of one or two of its
variables ;. We attempt to obtain easy algorithms to compute the coefficients of these
expansions as well as error bounds at any order of the approximation.

The starting point is the integral representation [[7], eq. (25)]

. o B I'(c) Loso (1 —s)e e ds

Fplaby,. bricy, . oap) = I'(c—a)l(a) /0 (1 —sxq)br--- (1 — sx,)br (1)
where R(a) > 0, R(c —a) > 0, z; ¢ [1,00) if b; > 1 for i = 1,2,3,...,r. This integral
defines the analytical continuation of F},(a,by,...,by;¢c;21,...,2,) to the cut complex
x;—planes €'\ [1,00) [[23], p. 30, theorem 2.3].

The first step in the analysis is to write the aforementioned integral as a generalized
Stieltjes transform. For that purpose, we perform the change of variable s = (1 +¢)~1
in (1), obtaining:

r o __ T(9 @)
FD(a,bl,...,br,c,xl,...,a:r)—P(C_a)r(a)/o (t—i—l—xl)bldt’ (2)
or
, . R C I =0
Fr(a,by, ... byycxq,. .. @) = T(e— o)) /0 T 7Y R dt, (3)
where
B tc—a—l(l _|_t)b1+b2+...+br—c B f'r—l(t>
fr—l(t) = szg(t + 1— a:k)bk f’r(t) == (t + 1 _ $2)b2 . (4)

Then, up to a factor, the Lauricella function F7, is a generalized Stieltjes transform
of fr—1(t) or fr(t). For ®(c—a) > 0, the function f,_1(t) is a locally integrable function
on [0,00) and satisfies

n—1
Ay .

Frat) =) pr s '), (5)

k=0

where
A :Zk: i mi:s Db —c —bs ) —br1 "
t k—my mi — Mo Myp_1 — Mp_2

7711:0 TTLQZO mT72:0 (6)

_br r—3
1—x, My _2 1— M —Mmiy1
(o)== TT0 =)



and fr=1(t) = O(t—tbitb2=a=1) when ¢t — .
On the other hand, for ®(c —a) > 0 and 2o — 1 ¢ RT U {0} if Rby > 1, f.(¢) is a
locally integrable function on [0, 00) and satisfies

n—1

£t = 3 s+ 100, @
k=0
where
k b, }
Bk = ZAk_j< j >(1 — x2)7 (8)
=0

and fr(t) = Ot "t1=271) when t — oc.

Classical asymptotic methods do not apply to integrals (2) and (3). But the asymp-
totic methods based on the distributional approach [24] [[25], chap. 6], [8], [9] may be
generalized in order to be applied to these integrals. This generalization is performed in
[5], [10], and also in this paper. In section 2, we summarise the main theorems obtained
in [5] and [10] and derive new theorems that we will need in this paper. In section 3
we apply those theorems to obtain asymptotic expansions of integrals (2) and (3) with
error bounds, for both: large x; and fixed z;, 7 # 1 and large z; and x2 and fixed
xj, j # 1,2. Several numerical examples are shown as illustrations.

2. Asymptotic expansions of generalized Stieltjes transforms

Let f(t) be a locally integrable function on [0, c0) which satisfies

n—1

F0) ="t + 1), (9)

k=K

where K € Z, 0 < Rs < 1, {ay, k = K, K +1,K + 2,...} is a sequence of complex
numbers and f,,(t) = O(t~""°) when t — oo.

Then, asymptotic expansions (including error bounds) of the generalized Stieltjes
transforms of f(t),

= [T R ft)
Sf(w,z):/o mdt, Sf(wl,wg,z):/o (t+xz)w1(t+yz)w2dt’ (10)

for large z and fixed = and y are given in [[25], chap. 6], [8] and [9] for real w, w,

wy and s and complex z, y, z. In [5] and [10], these theorems are generalized to the
case of complex w, wy, we and s. Therefore, in the following pages, we consider that
the parameters w, wy, wa, x, y and z are complex and that f(¢) is a locally integrable
function on [0,00) which satisfies (9). In the following pages, we use the notation
introduced in [25].



2.1. Asymptotic expansion of S¢(w;z) and Sf(w;,ws; z) for large z

Asymptotic expansions of S¢(wj; z) for large z are given in the following two theorems
proved in [[10], theorems 1,2 and 3].

Theorem 1. Let f(t) be a locally integrable function on [0,00) which satisfies (9) with
0<Rs<1,s#1. Then, forz€ C\R™U{0}, R(s+w)+ K >1andn=1,2,3,...,

1

/Oo [ . (Dfral(w+s+k—1)
0o (42w I'(s + k)T'(w) sin(ms)zwtsTh—1

(=)F(w)eM[f; k +1]
klzktw

(11)

3 =
=R

+ R, (w; 2),

b
o

where empty sums must be understood as zero and (w), denotes the Pochhammer symbol.
In this formula, M|[f; z] denotes the Mellin transform of f: fooo t*=Lf(t)dt or its analytic
continuation. The remainder term is defined by

R, (w;z) = (w), /OO Ina(t)dt (12)

o (t+z)mre’
where fp n(t) is defined recursively by

0 -1 k+1 00
o) = fu(t),  forsr(t) = —/ fre(w)du = %/ (u—t)k fo(u)du. (13)
t : t
The remainder term verifies R, (w;z) = O(z7""*=5T1) when 2 — .
Theorem 2. Let f(t) be a locally integrable function on [0, 00) which satisfies (9) with
s=1. Then, for z€ C\R-U{0}, Rw+ K >0 andn=1,2,3,...,

o w+k
[l =y R L S G "

[ak(log( ) v —(k+w) ) —|—bk+1] + R, (w; 2),

where empty sums must be understood as zero and for k = 0,1,2,..., the coefficients
bi+1 are given by

buoa = T |MIfiz + 10+ -2+ anly + 0+ 1) (15)
The remainder term R, (w;z) is given in (12) and verifies R, (w;z) = O(z~" " log z)
when z — 0.

To obtain now asymptotic expansions of Sy(wq,ws;2) for large z we use the same
techniques that we used in [10]. We denote by S the space of rapidly decreasing functions
and by <A, > the image of a tempered distribution A acting over a function ¢ € S.
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Since f(t) in (9)-(10) is a locally integrable function on [0, c0), it defines a distribution
f:

<fp>= /Ooo Ft)p(t)dt.

The distributions associated with t=%=% k = 0,1,2,...,n — 1 are given by [[25], chap.
5], [10]:

1 o
<tk S o >= —)/ t=5p®) () dt if 0<Rs <1,
S)k Jo
—k—s — 1 > —1iSs, (k+1) : e
<t ,¢>:m ) t (2 (t)dt 1f175821—|—2\$8,

where (s)j denotes the Pochhammer symbol of s, and

1 o0
<tk o >= 7 / log(t)p*+1) (¢)dt.
~Jo

To assign a distribution to the function f,(¢) introduced in (9), we use the recursive
definition of f, ,(t) given in (13) [[25], chap. 5], [10]:

< fna@ >= (*1)n < fn,naSO(n) >= (1)n/ f”v”(t)so(n)(t)dt-
0

Following the same steps in [10], we define a particular function of S:

e M

(t +zz)wr(t +yz)w

©n(t) €S,

where xzz ¢ R~ U {0} if Rw; > 1, yz ¢ R~ U {0} if Rwy > 1 and i > 0. In the following
lemma we calculate the image of the tempered distributions defined above and of the
delta distribution acting over ¢, (t), and take the limit n — 0.

Lemma 1. Let f(t) verify (9). Then, for0 < Rs <1, k=0,1,2,... and n=1,2,3, ...,
the following identities hold,

. = f@®)
1 f = dt for R K>1.
nll% <hn > /0 (t + x2)wr(t + yz)w2 or R(s+ w1 +ws) +K >

k k
i ) o (D" g~ (kY (wn)(w)ey.
71711% < 53 8077 >= zk+w1+u}2 ZO ] xwl-f-jleg-f—k:—j’
]:
0 o LA =Tk +wi fwo+s5-1) (="
n I“(wl +w2)zk+w1+w2+s—1 xwl—i—k—i—s—lng

F(l—s—k,wg

w1 + wa

%ii% <t %0 X

1—£> for R(s+wi +w2) +k>1, s#1,
Y



where F ( a(s z) =oFi(a, (3,9; 2) denotes the Gauss hypergeometric function,
k+1
lim < log(t) (k+1) 5 (=1)k* Z k+1 (w1)j(W2) k15
o g(t),on (k + w1 + wo) 2h+wiTws j ZwrHi—lywathti—j

§j=0
Lk+14+wy—3j

k%@@—7—¢@+wf“W»F<k+1+wy+m

o (LE+1+ws
E+1+4+w + ws Y

where F’ (aéﬂ ‘ z) % F < @ z> and

%ilﬁl)<fnna@£])> (—1)" Y <7?>/OOO( (w1);(w2)n—j fan(t)

J t+xz)itwi(t 4 yz)n-itwe

1—f>+
y
X

1——>], for R(s + w1 +wsz) >0,

=0

for R(s + w1 +wz) +n > 1.
Proof. It is a straightforward generalization of the proof of [[5], lemma 4] from real to

complex values of s, w; and ws. a

Using the aforementioned lemma 1 and lemmas 1 and 2 of [10], we prove the following
theorems.

Theorem 3. Let f(t) be a locally integrable function on [0, 00) which satisfies (9) with

0<Rs<1,s+#1. Then, forxz,yz € C\R™U{0}, Rwy, Rwy > 0, R(s+wi+we)+K >
landn=1,2,3,...,

1 n—1
> f(t) B 3 Ay B '

(16)
where empty sums must be understood as zero. The coefficients Ay, By and Ci are
defined by

1—f>,
Y

Akzak

F(l—s—k)F(w1+w2+s+k—1)F 1—s—k,w
['(wy + we)awitsth—lyw: w1 + wo

and

5 =& W““i() ); (w2)e—s

w1 +] ktwz—j "
J=0 y

The remainder term is defined by

" /n o0 frnn(t)dt
R, (wy,we;2) = Z <j> (wl)j(w2)n—j/0 i+ a:z)j“”l(i 3_ yayrread (17)

J=0
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where f, . (t) is defined in (18) and verifies R, (w1, wq;2) = O(z7 "~ W1=w2=sT1) yhen
z — 00.

Proof. The proof of formulas (16)-(17) is a straightforward generalization of the proof
of theorem 3 in [5] from real to complex parameters. It uses previous lemma 1 instead
of lemma 4 as used there, which is valid only for real parameters. The proof of the
asymptotic character of expansion (16) is a straightforward generalization of the proof
of [[5], theorem 5] to the case of complex parameters (theorem 5 in [5] is proved only
for real parameters). 0.
Theorem 4. Let f(t) be a locally integrable function on [0, 00) which satisfies (9) with
s = 1. Then, for zz,yz € C \R~ U {0}, Rwy,Rws > 0, R(wy + we) + K > 0 and
n=1,23,..

>0 £(t) — A = (-DF [
dt=S — 2k NV B (log(xz)—
/0 (t+w2)™r (£ + y2)» k;(zwﬁwﬁk 2 FlzFrwes elog(e2)= g
v — Yk +wy +w2)) + By, —l—C’k] + Ry, (w1, we; 2),

where empty sums must be understood as zero,

A, = akF(—k)F(un + wy + k) ( —k, ws

[(wy + we)awrthkyw: w1 + Wa

1—5>,
Y

k1 .
B o + (k ) wi)j(w2)g+1—; F(l,k—i—1+w2—j L

(]{;+w1 _|_w2 Z pwitj— lng—l—k:—f—l J k+ 1+ wp +ws

M

k+1

By

k+ 1 wi)j(W2)k+1—5 o [ LE+1+wy —j
k+1+w +ws

(k:—i—w1+w2 Z

;L"LU1+] lyw2+k+1 j

Q

and
w2)k j
Ck = bk+1 Z ( ) xler]ykerQ J’

where byy1 is given in (15). The remainder term R, s(w1,ws;2) is given in (17) and
verifies R, (w1, we;2) = O(z~ "~ "1~ "2 log z) when z — 0.

Proof. The proof of the previous formulas is a straightforward generalization of the
proof of theorem 4 in [5] from real to complex parameters. Again, it uses previous lemma
1 instead of lemma 4 as used there. And again, the proof of the asymptotic character
of expansion (18) is a straightforward generalization of the proof of [[5], theorem 5] to
the case of complex parameters. a.



2.2. Error bounds

The following two propositions show that, if 3 ¢, > 0 such that |f,(t)| < ¢, t= "%
V t € [0,00) then, bounds for the remainder terms in the expansions above can be
calculated in terms of the constant c,,.

Proposition 1. If, for 0 < Rs < 1, the remainder f,(t) in the expansion (9) of
the function f(t) satisfies the bound |f,(t)| < c,t™ "% Wt € [0,00) for some positive
constant ¢, then, the remainder R, (w;z) in the expansion (11) satisfies

enm(w|)nI'(n + Rw + Rs — 1)h(z, w) y
(n + Rs)T(n + Rw)] sin(7Rs)|| [ ReoRs—1

7 ( 1—%s,n+§Rs+§Rw—1‘Sin2 (Arg(z)>>

(n+Rw +1)/2 2

Ro(w; )] <
t (19)

and the remainder R, s(w1,ws; 2) in the expansion (16) satisfies

Ry (101,91 2)| <cn7r(\w1| + |wa|)nI'(n + R(wy + we + 5) — 1)h(xz, w1)h(yz, wa)
MR TR IS T (0 4+ Re)T (n + Ry + Rws)[ sin(rRs)[[vz[r R Feata) -1

1—Rs,n+R(s+wy +we) —1]1 U
F (-2,
2 lvz]

(n 4+ Rwy + Rwq +1)/2
v = Min{|z|, |y|}, u = Min{R(zz), R(yz)} (20)

where

and Arg(2)

o 1 if rg(z)Sw >0
h(z,w) = {e'Arg(z)%w if  Arg(z)Sw < 0. (21)
Proof. (19) is proved in [[10], proposition 1]. The second bound is obtained using
(19), the inequalities |t + zz|?, |t + yz|? > t? + 2ut + |vz|? in the definition (17) of
R, s(wi,we; z), formula [[16], p. 309, eq. 7] and the equality

n

5 () (oe(hwabyne = (ol + sl 22)
k=0
O

Proposition 2. If, for ®s = 1, each remainder f,(t) in the expansion (9) of the func-
tion f(t) satisfies the bound |fn(t)| < c,t ™" 1V t € [0,00) for some positive constant
¢, then, the remainder R, (w;z) in the expansions (11) and (14) satisfies

Cnm(|Jw])n(n 4+ Rw — 1/2)h(z, w)
[(n+1/2)C(n + Rw)|z|r+Rw—1/2

(e o s (252 = R i)

| R (w; 2)| <
(23)




10

where ¢, =Max{cy,cn-1+ |an—1|} and

—n—Rw

|R (wz)| < (‘w’)n E(Cﬂ—l + ’an—ll) +cn Cn
n ) _— |

27w | (= 1)10(z, o) Re Tl
(n + Rw)[(2e + Rz + [R2])(|z| 7L = 1) + (|Rz| — N2) log | 2[]
2(n+ Rw + 1)|z + €
de + RNz + |Rz| —26|z|H 2le + z|H_4
2¢(n+ Rw+ D[z] 0 e((n+ Rw)?—1)|7]

14 <
z

[log|z|—|—

H+ (24)

[} htew) = R @)

where € is an arbitrary positive number,

2—m,n+Rw+m| . o (Arg(z+e¢)
H, =F ’ e — 2
m ( (n+Rw+3)/2 ( 2 (25)
and
1 if Rz>0
O(z,€) =< [sin(Arg(z)| if e€>-Rz>0. (26)
14+¢€/z] if —Rz>e>0.
For large z and fixed n, the optimum value for € is given approximately by
- 2H_ H
2= ¢ 12 " (Rz + [Rz[)Ho ‘ (27)
n(ep—1+ lan—1] [ (n+Rw)2 =1 2(n+ Rw + 1)|z|
The remainder R, (w1, ws;z) in expansions (16) and (18) satisfies
Ry (w1, w23 2)| < R (wy + wa22) + RY (wy + was y2), (28)

With either i =1 ori=2. If x, y, z, w, w1 and wy are positive real numbers, then

|Ry (w; 2)| < [ne(cn—1 + an—1]) + cn(Sn(z, 6, w) + To(z, €, w)) ]| ng,:}%’ (29)

where € is again an arbitrary positive number,

nz [(6 + z)n w1 z”*“’_l]
Sn(z,e,w) = Mi , 1
(z,€,w) 1n{ e(n+w—1)(e + z)ntw-1 Yln+1)+y
and
T ( ) G Fln+twlintwtl;—>
n(z,6,w) = n+w, lin+w+1; — |.
(n+w)(e+ z)ntw €+z

For large z and fixed n, the optimum value for € is given by

Cn
n(cp—1 + ‘an—l‘).

(30)
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The remainder R, (w1, ws;z) in expansions (16) and (18) satisfies the bound (29) re-
placing w by wy + wy and z by vz, with v =Min{|z|, |y|}.

Proof. The bounds (23)-(27) for R,,(w;z) are obtained in [[10], proposition 2].

On the other hand, the bound (28) is obtained using the inequality |t + zz| =% |t +
yz| TR <t 4wy TR TRz ¢ gz | R =Rz iy the definition (17) of R, (wy,ws; 2)
and formulas (22), (23) and (24).

The bounds for R, (w;z) and R, (w1, ws;z) for real positive z, y, w, wy, we and z
have been obtained in [[9], propositions 2 and 4]. O

In the following two propositions, two families of functions f(t) are given, which
verify the bound | f,,(t)| < ¢t~ % required in the aforementioned propositions 1 and
2. Moreover, the constant ¢, is easily obtained from f(t). These propositions are proved
in lemmas 5 and 6 and corollaries 1 and 2 in [5].

Proposition 3. If f(t) verifies (9) with Rs > 0 and the function g(u) = u=*"K f(u=1)
is a bounded analytic function in the region W of the complex z—plane comprised by the
points situated at a distance < o from the positive real azis (see fig. 1), then R, s(w;z)
and R, s(wi,ws; z) satisfy the bounds given in propositions 1 and 2 with ¢, = Cr™",
where C is a bound of |g(z)| in W and 0 < r < 0. Moreover, the expansions given in
theorems 1 and 2 are convergent when the parameter |z| is longer than the inverse of the
width of the region W: when o|z| > 1 if Rw < 1 or o|z| > 1 if Rw > 1. The expansions
given in theorems 3 and 4 are convergent when the parameter |vz|, with v =Min{|z|, |y|},
is longer than the inverse of the width of that region: when olvz| > 1 if Rwy + Rwe < 1
or olvz] > 1 if Rwy + Rwg > 1.

For Rs = 1, the convergence of these expansions requires also that lim,, . n¥ La,z~" =
2 n oo n

witwa=lg (vz)~™ = 0 respectively.

0 orlim,_ . n

Figure 1. Analyticity region W for the function g(z) considered in proposition 3.

Proposition 4. If the expansion (9) of f(t) verifies the error test, then R, (w;z) and
R, s(w1,we; z) satisfy the bounds given in propositions 1 and 2 replacing ¢, by |a,| and
cn—1 by 0. Moreover, the expansions given in theorems 1 and 2 are convergent when
the coefficients ay, in the asymptotic expansion (9) verify lim, ..o n* " ta,z=™ = 0. The
expansions given in theorems 3 and 4 are convergent when lim,, oo n®¥1tw2=1q, (vz)™" =
0, v =Min{|z|, |y|}.
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3. Asymptotic expansions of the Lauricella function F7,

In order to obtain asymptotic expansions of F[,(a,b1,...,by;c; 21, ..., 2,) for |x1] —
oo and/or |za| — 0o we just apply theorems 1-4 to the integrals (2) or (3). Error bounds
for the remainders are obtained from propositions 3 and 4, because the functions f,_1(¢)
and f,(t) which define F7}, in (2) and (3) belong to the class of functions considered in
those propositions.
Corollary 1. For Ra > 0, R(c—a) > 0, 14+a—by ¢ Z, |Arg(2)| < 7 and x;—1 ¢ RTU{0}
if Rb; > 1 for2 <i<r,

r (c) L(by 4 k) (-1)*Cy
FD(a,bl,...,bT;c;l—z,xg,...,xr):F<c_a {g T (by) k‘szrbl—i-
k=0

(31)

n—K-—1 k
)*T'(k +a) By

R’ﬂ 7b’~-ab7‘; y Ry R ,
b1 SlIlT[‘s kz:;) F —bl+a+1)zk+a+ (CL 1 C; 2, T2 g;)

where K = Int(R(1 — by + a)) and the coefficients By, are defined in (8). Coefficients
Cy, are given by

Nk+c—a)l'(a—k—bp)

CL =
NGRS 1—x,)b
(= BT (1 — 2, "
r— €2 Ty
FD1(k;—a—l—c;bg,...,br;c—bl,3:2_1,...,%_1>,
where s = Fr (R(1+a —b1)) +iS(1+a—by).
IfR(14+a—0b1) ¢ Z and n €N, a bound for the remainder is given by
n([b1])nl'(n + R(b1 +5) — 1)
n 7b,--.’b7’; ; ) 7"'7 —_ .

[Fn(a, b1 €202, )| < r(n+§Rs) T(n + Rby)|sin(aRs)|

(33)

h(zb1) L (1=Rsn+R(s+b)—1] . o (Arg(2)
2[R Or+e) (n+Rby +1)/2 2 ’

where h(z,b1) was defined in (21) and we can take ¢, = |B,_k| if the following condi-
tions over the parameters hold:

a,¢,by,... by €R, D by <, b =0, R(1—2;)>0,5=2,34,..r (34)
j=1
In any case, we can take c, = Cr~", where
O > Sup e |(1 4w e ( TTO+ (= ap)u) ™ || (35)

j=2
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W s the region considered in Proposition 3 for g(u) = u®*=o71f, 1 (u™"') with
0 <7 < Min {11 |1 - xQ‘ilg(bQL AR |1 - xT|71£(bT)} ) (36)

(1 if be¢zZ u{o}
5<b):{+oo it bezZ u{o}.

On the other hand, if R(1 +a —b1) € Z and n € N, two bounds for the remainder
are given by

Ca ([br])nL (1 + Rby — 1/2)h(z,b1)
= T(n+ 1/2)T(n + Rby )| 2|+ 01172

|Rn(a>b17"'>br;c; 2y L2y - - '7xr)|

37
F 1/2,n+ Ry —1/2 sin? Arg(z) = R(l)(B b1; z) 0
(n+Rby +1)/2 2 e AP T
and
b n cn € —n—§Rb1
|Ry(a,by,. .., besc2,@0,. .. m,)| < ’i}nl%bl {m 1+ Z [log | 2|+
(n+Rb1)[(2e + Rz + |R2])(|2] 7L = 1) + (|R2] — R2) log |2HH N
2(n + Rby + 1 !
(n+ 1+ )’Z-i—e’ (38)

de + Nz + |Rz| — 2¢|z| 2|e + 2|
2¢(n+Rby + D)]z| " e((n+ Rby)2 — 1)|7]

6(Cn—l + ‘Bn—K—ID +cn
(n —1)!10(z, ¢)nt+ibr

H—1:| +

} h(z.b) = RO(Cr ™, By, b 2).

In these formulas, ¢, =Max{|Bn—kl,|Bn—k-1|} with ¢, = |Bn—k| and ¢,—1 = 0 if
conditions (34) hold. In any case, we can take ¢, =Maz{cy,cn—1 + |Bn—K-1|}, with
cn = Cr™" given above. In (38), € is an arbitrary positive number, O(z,€) is given in
(26) and Hy, is given in (25) setting w = by. For large z and fized n, the optimum value
for € is given approximately by (27) setting w = by. Moreover, the expansion (31) is
convergent when Maz{|1 — z3|&(bo) 71, ..., |1 — 2, |€(b,) 71, 1} < 2.

Proof. To obtain the expansion (31), we just apply theorem 1 to the integral (2) with
f(t) = f-(t) given in (4), ar = Br_k given in (8), w = b; and s and K given above.
After the change of variable ¢t = u(1 — u) ™!, the mellin transform of f,.(¢) reads

r c—a— r —b;
Mfrk+1] = H(l—m,)—bi /1 utt : H 14+ g du.
i) 1 0 (1 _ u)k+b1—a+1 ; 1— T;

1=2 =2

Then, the first term in (32) follows from (1).

If (34) holds, then, by [[8], lemmas 3 and 4], the function f,(t) verifies the error test.
Therefore, by proposition 4, the remainder in the expansion (31) verifies the bounds
given in propositions 1 and 2 with ¢, = |B,—k|, ¢n—1 = 0. In any case, by proposition
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3, the remainder in the expansion (31) verifies the bounds given in propositions 1 and
2 with ¢,, = Cr™", C and r verifying (35) and (36) respectively. Therefore, the bounds
(33), (37) and (38) hold.

Now introduce the bound
% b — C _ _ n
Bl < 0 (P07 Max 11 = waleba) 1= 00"

where C' is independent of n, in (33) and (37). Then, using (36), we obtain that
limy, 00 R (a, b1, .., b5 ¢ 2, T2, .y 2,) = 0 if Max{|1—z2|€(b2) 7L, ... 1=, [€(by) 71, 1} <
|z|. O
Corollary 2. For Ra, R(c—a) > 0, x; — 1 ¢ RT U {0} of Rb; > 1 for 2 < i < r,
1+a—>b € Zand |Arg(2)| <,

: L'(c) 2 (=1)F(by)
Fp(a,bi,....bpsc1 — 2,29, .0 ,2,) = e~ ol @) { 3 k!szrbll ko
b1—a—1 Tk + )by — k —
[Burer-allos(z) =7 = vlh-+ ) 0] + 30 B 69

Rn(aablv" . ,br;C;Z,JIg,...,ﬂfr)},

where the coefficients By, are given in (8) and the coefficients Cy, are given by

e (=D)Ft0r =01 (k 4 ¢ — q)
“ T T(e—bo)(k+ b1 — a) TT_p(1 — 1)

{4 e 0)-

€2 Ly

Yk +b—a+ 1) Fpt <k—a+c,b2,...,b7«;c—bl;x
2

r—1/ 2 -~
Pt <k—a+c,bz,...,br;c—b1;z2_17"'733 _1> }+
Biiby—a (v +9(k +1)).

where FB_I/ represents the derivative of the Lauricella function Flg_l with respect to the
first parameter.

For n € N, two bounds for the remainder are given by (37) and (38) in corol-
lary 1 replacing Bn—k by Bp—a+b,- The expansion (39) is convergent if Mazx{|1 —
2o|&(b2) Y, |1 — 2, |E(b) 7Y, 1Y < 2|, where £(b;) is defined in (36).

Proof. To obtain the expansion (39), just apply theorem 2 to the integral (2) with
f(t) = fr(t) given'in (4), s=1, K = a — b1, ax = B4p,—q and w = by.
On the other hand, the coefficients By, in the expansion (7) of f,(¢) may be written

1 dF

B - blfafl - —1
= | ﬂto
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Using the Cauchy formula for the derivative of an analytic function, we obtain
dk+b1—a tk(l _ t)bl—a—l t
Biip,—a = . . 41
htby d%+ma{ (k+b —a)! 4 (1—1t>]t:1 (41)

The coefficient C,, in (39) is just b,41 given by (15) with a,, = By4+p,—a. The Mellin
transform M|f,;z + 1] in formula (15) is given by

T —a)l'(a—2z— s
(z+c—a)lfa—=z bbl)F’“ 1<z—a+c,b2,...,br;c—b1; a e - >a
Pe = 00) T (1 —25)™ 2

Then, when z — n, there are two singular terms in the limit in (15): Bty —a/(z — 1)
and I'(a — z — by). Setting z = n+ 17, expanding these terms at 7 = 0 and using (41) we
obtain (40).

The bounds (37) and (38) are obtained as in corollary 1 (but using only proposition 2).
g

Corollary 3. For Ra > 0, R(c—a) > 0, 1 +a—by — by ¢ Z, |Arg(zz)| < 7 and
|[Arg(y2)| <,

Fi(a,by,...,by051 —xz, 1 —yz,xs,. ..,

)= - {”‘1 (~1)* B

I(c—a)l(a) | Z K zktbitbe
nilpblebg—a—k:) (a+k) 4 p(brtbe—a—kb| o) (42)
T bl + b2 otk bzybzszra k by + b y

k=0
Ry(a,by,....bycxz,yz,25,. .., %)},

where K = Int(R(1+a—by —bs)) and the coefficients Ay are defined in (6). Coefficients
Dy are given by

_a (K (01);(b2)—; T(k + ¢ — a)T(—k +a — by — by)
Bk:Z(i)xbﬂyk*fJ T(e— b —bo) [[5(1— 2%

j=0 (43)
r— ‘r3 xr
FD 2 <k+c—a,b3,...,br;c—b1 —bz;ﬁ,...,x’r—l> s
where s = Fr (R(1 — by — bz +a)) +iS(1 — by — b2 + a).
IfR(14+a—by —bs) ¢ Zandn >0, a bound for the remainder is given by
‘Rn(ay bl: sy br; CGI2, Yz, X3, - - - 7xr)‘ <
cnm([b1] + |b2|)nT'(n + R(b1 + b2 + 5) — 1)h(xz, b1)h(yz, ba)
[(n+ Rs)T(n + RN(by + ba))| sin(7Rs)||vz|n+R(b1+bats)—1 (44)

I IL—Rs,n+RN(s+by +b) —1]1 1%
(n+R(by +b2) +1)/2 2 lvz| ’
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where h(z,w) was defined in (21) and w and v where defined in (20).
In formula (44) we can take ¢, = |Ap—k| if

.
a,¢,by,.. by €RD by <e, b; =0, R(1—a;)>0,5=345,..,r (45)

Jj=1
In any case, we can take ¢, = C, where

T
™

C' > Sup,ey |(1+ w2 "~ [ [T+ (1 = ay)u) (46)

Jj=3

and W is the region considered in proposition 3 for g(u) = ubr+b2=a=1f  (u=1).
On the other hand, if R(1 4+ a — by — bs) € Z and n > 0, the remainder in the
expansion (42) satisfies

|R,(a,by,... ,becixz,yz, @, ..., 2, SRS)(An,bl +bo; 1 —x2)+

47
RV (A, by 4 by; 1 — y2) )

or
’Rn(aa b17 R bT7 & 33279275337 T 7$1”)‘ SR;?) (C7 An? bl + b27 1 - .fZ)‘i‘ (48)

R (C, Ay, by + by 1 — y2)

where R and R were defined in (37) and (38). Moreover, the expansion (42) is
convergent if v|z| >Maz{|1 — z3|€(b3) 71, ..., |1 — 2, |€(b,) 71, 1.

Proof. To obtain the expansion (42), just apply theorem 3 to the integral (3) with
f(t) = fr—1(t) given in (4), ar = Ax_k given in (6), wy = by, wa = by and s and K
given above. The calculation of coefficient Cj in formula (16) of theorem 3 requires
the calculation of the Mellin transform M|f,_1;k+ 1]. After trivial manipulations, and
using (1) we obtain

Nk+c—a)l'(=k+a—by —by)
P(c—by = b2) [[is(1 — zi)"

F]g*g <k+ca,b3,...,br;cb1bg;%,...jxxr 1>
3 = r

M[frfl;k + 1] =

and (43) follows.

If (45) holds, then, by [[8], lemmas 3 and 4], the function f,_;(t) verifies the error
test. Therefore, by proposition 4, the remainder in the expansion (42) verifies the
bounds given in propositions 1 and 2 with ¢, = |4,—k|, ¢n—1 = 0. In any case, by
proposition 3, the remainder in the expansion (42) verifies the bounds given in formula
(28) of proposition 2 with w; = by, we = by, r = 1 and ¢, = C, C verifying (46).
Therefore, the bound (47) holds.
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Finally, using the same argument that we used at the end of the proof of the corollary
1, we obtain that, if Min{|zz|, |yz|} >Max{|1 — x3]&(b3)~L, ..., [1 — 2,.]&(b.) 1, 1}, then
limy, o0 R =0 and therefore, lim,, oo Ryp(a,b1,...,bq5c22,9y2,23,...,2,) = 0. O
Corollary 4. For fa > 0, R(c—a) > 0, 1 +a—by — b € Z, |Arg(zz)| < m and
[ Arg(yz)| <,

, [(e) = (D Cr
FD(a)b17"'7b7";C;]—_$Z71_yzax37"‘7x7"):m{z W—'_

2 1‘5)*(@)

V¥ Aktby +b2—a
Z I = bt o)t (Dr(108(2) =7 = Yl + by ba)) + D +

bl“’i“‘l [(—k+bi+b—a)L(k+a) 4y ( by +by —a—k, by

[(by + by)akta=baybe zathk by + b2

Rn(a,bl,...,br;c; TZ,YZ, T3y Tp)},
where coefficients Ay, are given in (6) and coefficients Dy, D). and Ciy1 are given by

b ki EADN (00)i0)iriy p(Lk+1+b—j|
$b1+] lyb2+/€+1 J k+1+b1+b2 Y ’

1—§>

y

k+1 .
1 . ) 1 1 _
D;c EZ <k+ > (b1>](b2)k+1 j F, < ,k+ +bQ Vi

= j $b1+j—1ybz+k+1—j kE4+1+by + by
and
I'(k+c—a)(—1)ktbritbe—a-l
Ck:—H = T b X
(k+b1 + by —a) F(C—bl —bg) Hl_?’(l 331) i
[(w(lﬁ—c—a) —Y(k+bi+by—a+1))x
r—2 . . 333 Ty
FD (ki-l—c—a,bg,...,br,c—bl—bg,x3_1,...,mT_1>+ (50)
Y — coybpyc— b1 — bo; 3 Ir
D <k’+C (I,bg, ,b,C bl b2’.%'3—17 ’.’Er—l +
k
kY (01);(b2)k—;
Aletbr+by—a (7 + (k + 1))} > < ) pIE e e
= \j/) 2ty
respectively.
The remainder in the expansion (49) satisfies the bounds (47) and (48). More-
over, the expansion (49) is convergent if Min{|zz|, |yz|} >Maz{|1 —z3|&(b3)~1, ... |1 -

x.E(b) 7L 1}

Proof. To obtain the expansion (49), just apply theorem 4 to the integral (3) with
ft) = fro1(t) given in (4), s =1, K = a — by — ba, ax = Aktb,4by—a, w1 = by and
Wwo = bg.
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On the other hand, the coefficients Ay, in the expansion (5) of f,._1(t) may be written

1 dF
)

~ K dtF
Using the Cauchy formula for the derivative of an analytic function, we obtain

()L

Coefficients Cj, 41 in (49) are given by b,41 in (15) with a,, = Ap4p,+b,—a. The Mellin
transform M|f,_1;2z + 1] in formula (15) is given by

MNz+c—a)l'(a—z—by —by) x3 Ty
F(C—bl —bg) H::?)(l—a:i)bi 1'3—1’”’:1,‘7"—1 '

Then, when z — n, there are two singular terms in the limit in (15): Ay4b,4+by—a/(2—7)

Ay,
£=0

dk+b1+b27a tk(l _ t)b1+b27a71
Ak+b+c—a - dtk+bl+b2_a |: (51)

(k+0b1+ by —a)!

FB*Q <z +c¢—a,bs,..,b.;c— by — bo;

and I'(a — z — by — by). Setting z = n + 7, expanding these terms at 7 = 0 and using
(51) we obtain (50).
The bounds (47) and (48) are obtained as in corollary 3. O

3.1. Numerical experiments

The following tables show numerical experiments on the approximation and the
accuracy of the error bounds supplied by corollaries 1-4. In these tables, the second
by, . xy), for r =3 and r = 4. The
third and sixth columns represent the approximation given by corollaries 1, 2, 3 or 4 for
n =1 and n = 2 respectively. The fourth and seventh columns represent the respective

column represents the integral F7,(a, b, . .

relative errors, and the fifth and last columns are the respective relative error bounds
given in those corollaries.

Parameter values: )
a=2, by =2.25, by = 0.05, b3 = 0.25, ¢ = 3.5, 22 = 0.05, 3 = 0.1, Arg(v1) = ==

First or. Relative | Relative Second or. Relative | Relative
|1 Fg approx. error er. bound | approx. error er. bound
20 0.0084304 - 0.0011291 - 0.198 0.388 0.00089615 - 0.019 0.036
0.0027687i 0.0022707i 0.0027532i

50 0.00012195 - | 0.00014874 - 0.076 0.126 | 0.000123723 - 0.0029 0.0048
0.00059661 0.00055883i 0.0005963i

100 2.7056e-5 - 3.1065e-5 - 0.037 0.055 2.718e-5 - | 7.15e-4 1.05e-3
0.000175i1 0.0001696i 0.0001747i

200 5.8769e-6 - 6.4469e-6 - 0.018 0.025 5.8855e-6 - 1.74e-4 2.39e-4
4.9249e-51 4.856e-51 4.9248e-5i1

500 | 7.66297e-7 - 8.0748e-7 - 0.007 0.009| 7.66537e-7 - 2.7e-5 3.4e-5
8.86727e-61 8.8201e-6i 8.86726e-61

1000 | 1.62758e-7 - | 1.682654e-7 - 0.0035 0.0042 | 1.62774e-7 - 6.6e-6 8.1e-6
2.37149e-61 2.36535e-61 2.37149e-6i

Table 1: Approximation supplied by (31) and error bounds given by (33).
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a=1.5, by =2.25, by =0.05, b3 =0.25, by =0.1¢=3.5, 22 = 0.25, 23 =0.25, 24 = 0.1, Arg(z1) ==

First or. Relative | Relative Second or. | Relative | Relative
|21 Ff) approx. error er. bound | approx. error er. bound
20 |0.00761345 | 0.00460439 0.39 0.5]0.00730585 0.04 0.06
50 |0.00224492 | 0.00190431 0.15 0.18 | 0.00223068 0.0063 0.0096
100 | 0.0008509 | 0.00078796 0.074 0.088 | 0.00084959 0.0015 0.0023
200 | 0.0003145|0.00030312 0.036 0.042 | 0.00031442 | 0.00038 0.00056
500 | 8.23946e-5| 8.1217e-5 0.014 0.016 8.239¢-5 6.e-5 8.8e-5
1000 | 2.9578e-5| 2.9383e-5 0.007 0.008 | 2.9577e-5| 1.49e-5 2.2e-5

Table 2: Approximation supplied by (31) and error bounds given by (33).

Parameter values:

a=2, b =3, 00=0.5,b3=03, c=4, 29 =02, 23 =0.3, Arg(a;) =7

First or. Relative | Relative Second or. Relative | Relative
|21] Fg approx. error er. bound | approx. error er. bound
20 0.00095376 | 0.0009806 0.028 0.118 0.000956 | 0.0024 0.01
50 0.00017512 | 0.00017612| 0.0057 0.029 0.00017515 | 0.0002 0.001
100 4.6326e-5 4.6403e-5| 0.00167 0.0099 4.6327e-5| 2.87e-5 1.88e-4
200 1.19702e-5 | 1.19759e-5| 4.78e-4 3.46e-3 1.19703e-5| 4.12e-6 3.28e-5
500 | 1.960135e-6 | 1.960311e-6 9.e-5 8.65e-4 1.960136e-6 | 3.09e-7 3.29¢e-6
1000 | 4.944542e-7 | 4.944666e-7 2.5e-5 3.04e-4 | 4.9445423e-7 4.3e-8 5.8e-7

Table 3: Approximation supplied by (39) and error bounds given by Min{(37),(38)}.

Parameter values:

a=1, by =3, bp =05, b3 =0.7, by =0.25, ¢ =5.25, 22 = 0.3, 23 = 0.1, x4 = 0.3, Arg(z1) = 5F

First or. Relative | Relative | Second or. Relative | Relative
|z1] Fé approx. error er. bound | approx. error er. bound
20 0.00320879 - | 0.003088756 - 0.006 0.037 0.0031949 - | 0.00084 0.0054
0.02424707i 0.0243536i 0.0242319i

50 0.00055794 - | 0.00055321 - 0.0005 0.004 0.0005578 - | 2.76e-5 0.0002
0.0099322i 0.009935i 0.009932i

100 | 0.00014352 - | 0.000143146 - 8.15e-5 6.88e-4 0.000143512- | 2.03e-6 1.97e-5
0.00498964i 0.0049898i 0.004989631

200 3.6401e-5 - 3.6373e-5 -| 1.18e-5 1.22e-4 3.64e-5 - 1.46e-7 1.75e-6
0.00249847i 0.00249848i 0.00249847i

500 | 5.875349e-6 - | 5.874485e-6 - 9.e-7 1.2e-5 5.875348e-6 - 4.4e-9 7.1e-8
9.9988e-4i 9.99988e-4i 9.9988e-41

1000 | 1.473154e-6 -| 1.47309e-6 - 1.27e-7 2.19e-6 | 1.4731537e-6 - | 3.05e-10 6.28e-9
4.99983e-5i 4.99983e-51 4.99983e-51

Table 4: Approximation supplied by (39) and error bounds given by Min{(37),(38)}.




Parameter values:
a=2, by =1.25, by =1.05, b3 =0.25, ¢ = 3.5, 3 =0.1, Arg(x1) =, Arg(ze) =7

20

First or. Relative | Relative Second or. Relative | Relative
|z1],|2z2] Fg approx. error er. bound | approx. error er. bound
20, 40 0.00147675 | 0.00125527 0.15 0.63| 0.00146013 0.011 0.057
50, 80 0.000364323 | 0.000341343 0.063 0.178 | 0.000363878 0.002 0.0066
200, 100 7.664583e-5 | 7.460133e-5 0.0267 0.109 | 7.661635e-5| 3.84e-4 0.002
400, 300 1.506288e-5 1.4906e-5 0.01 0.02 | 1.506206e-5 | 5.82e-5 1.32e-4
800, 600 4.02922e-6 | 4.008577e-6 0.005 0.009 | 4.029166e-6 | 1.43e-5 3.11e-5
1500, 1000 | 1.331099e-6 | 1.327269e-6 | 2.877e-3 6.45e-3 | 1.331093e-6 4.6e-6 1.22e-5

Table 5: Approximation supplied by (42) and error bounds given by (44).

Parameter values:
a=1, by =24 0.5, bp =2 —1.15i, b3 =0.25, by = 0.25, ¢ =3, z3 = 0.25, x4 = 0.1, Arg(z1) =m, Arg(ze) =7

First or. Relative | Relative | Second or. Relative | Relative
|z1],| 22| Fé approx. error er. bound | approx. error er. bound
20, 50 0.00973631 - 0.00973647- 1.9e-5 4.5e-5 0.00973632 - 1.3e-6 4.8e-6
0.000433265i 0.00043335i 0.00043327i

30, 70 0.006805412 - 0.00680545 - 6.5e-6 1.2e-5| 0.006805414 -| 3.02e-7 8.1e-7
0.00033956i 0.000339585i 0.00033956i

50, 90 0.00478282 - 0.00478283- 2.06e-6 4.66e-6 0.004782825- | 6.29e-8 1.99e-7
0.000331843i 0.000331849i 0.000331843i

100, 200 0.002256123 - 0.002256124 - | 2.27e-7 2.75e-7| 0.002256123 - 3.38e-9 4.3e-9
1.397424e-4i 1.397427e-4i 1.397424e-41

500, 700 5.5346533e-4 - | 5.5346533e-4 - 3.04e-9 3.87e-9 | 5.5346533e-4 - 1.1e-11| 2.05e-11
4.956593e-51 4.9565931e-5i 4.956593e-51

1000, 1100 | 3.1368459¢-4 - | 3.1368459e-4 - 5.4e-10 8.9e-10 | 3.1368459e-4 - | 2.27e-12 3.e-12
3.4142407e-51 3.4142407e-51 3.4142407e-51

Table 6: Approximation supplied by (42) and error bounds given by Min{(47),(48)}.
Parameter values:
a=1,0=2 bp=1, b3=0.1, c=25, 3 =0.25, Arg(z1) = =, Arg(z) =7
First or. Relative | Relative Second or. Relative | Relative
|1 ] Fg approx. error er. bound | approx. error er. bound
30, 40 0.00953984 - 0.0095395 - 2.83e-5 0.0015 0.00953984 - 8.4e-7 0.0001
0.0143915i 0.0143911i 0.0143915i

50, 70 0.0056695 - 0.0056695 - 6.69e-6 0.0004 0.0056695 - | 1.22e-7 1.6e-5
0.0084865i1 0.00848646i 0.0084865i1

100, 150 0.00280578 - | 0.00280578 - 9.24e-7 5.45e-5 0.00280578- | 9.34e-9 1.1e-6
0.00411922i 0.0041192i 0.00411922i

400, 300 7.073525e-4 - | 7.073525e-4 - | 3.27e-8 1.5e-5| 7.073525e-4 - 1.9e-10 1.5e-7
0.00140188i 0.00140188i 0.00140188i

700, 600 4.068369e-4 - | 4.068369e-4 - 5.86e-9 2.45e-6 | 4.068369¢e-4 - | 5.38e-11 1.21e-8
7.60952¢e-41i 7.60952¢e-41i 7.60952e-41i

1200, 1000 | 2.369669e-4 - | 2.369667e-4 - 1.28e-9 6.99e-7 | 2.369667e-4 - | 1.88e-11 2.08e-9
4.4902823e-5i | 4.4902823e-5i1 4.4902823e-5i1

Table 7: Approximation supplied by (49) and error bounds given by Min{(47),(48)}.




Parameter values:
a=1,b; =2, by=1, b3 =0.25, by = 0.25, ¢ = 3.5, 3 = 0.25, ©4 = 0.1, Arg(z1) =7, Arg(xs) =

21

First or. Relative | Relative Second or. Relative | Relative
|1 ] Ff) approx. error er. bound | approx. error er. bound
20, 50 0.01672667 0.016724 1.6e-4 0.001 0.0167265| 7.44e-6 8.26e-5
30, 70 0.01166452 0.01166385 | 5.75e-5 4.13e-4 0.0116645| 1.65e-6 2.1e-5
50, 90 0.00788302 0.00788289 | 1.76e-5 2.24e-4 | 0.00788302 2.6e-7 7.5e-6
100, 200 0.00382053 0.00382052 | 2.45e-6 2.8e-5 0.00382053 | 7.86e-9 4.3e-7
500, 700 8.8603367e-4 | 8.8603364e-4 3.6e-8 1.5e-6 | 8.8603367e-4 | 1.6e-10 6.2e-9
1000, 1100 | 4.834595e-5| 4.834596e-5| 6.26e-9 5.6e-7 | 4.834595e-5 | 3.23e-11 1.5e-9

Table 8: Approximation supplied by (49) and error bounds given by Min{(47),(48)}.
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