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Abstract

We revise Laplace’s and Steepest Descents methods of asymptotic
expansions of integrals. The main difficulties in these methods are orig-
inated by a change of variables and an eventual deformation of the
integration contour. We present a simplification of these methods that
only requires an expansion of the integrand at the critical point(s). In
this way, the calculation of the coefficients of the asymptotic expansion
is simpler. The simplification in the case of several relevant critical
points is even more significant and requires multi-point Taylor expan-
sions. The new method that we present here unifies Laplace’s and Steep-
est Descents methods in one unique formulation. Uniformity properties
of the method are discussed. Asymptotic expansions of the Bernoulli
and Jacobi polynomials and of a generalized confluent hypergeometric
function are given as illustration.
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1 Introduction

The method of Steepest Descents is one of the most known and reputable
classical methods for finding the asymptotic behaviour of integrals. It was
introduced by Debye [2] in a paper concerning Bessel functions of large order.
This method applies to contour integrals of the form:

F (z) ≡
∫

C

ezf(w)g(w)dw, z → ∞, (1)

where C is a path in the complex plane, z ∈ C and the functions f and g are
smooth enough or analytic wherever it is needed to perform the manipulations
described below.

The critical points of the integrand are the points where f ′(w) vanishes
(saddle points of f(w) if it is analytic). These points may give the main
contributions to the asymptotic behaviour of the function F (z) for large values
of z. Other points that may give significant contributions are the endpoints
of the path C, if these are finite. In fact, if C = [a, b] ⊂ R and f(w) is real,
one tries to determine if �(z)f(w) is maximal at one of the critical points
or at the endpoints of C. If a critical point, say w0 ∈ C, gives the main
contribution (e�(z)f(w) has its peak value at w0), the asymptotic expansion of
F (z) is obtained from a suitable change of variable and local expansions of
f(w) and g(w) at w0. This method is the also very famous Laplace’s method
and we refer the reader to the modern book of Wong [[10], chap. 2. sec. 1] for
a very complete description of it. A more classical reference is [1].

For C ⊂ C and complex f(w), if one of the above mentioned critical points
is not located on C, and one has verified that this point will give the main
contributions, one tries to deform the path C → Γ such that the new path Γ
goes through that critical point (in fact saddle point of f(w)), say w0. This
is the Steepest Descents method. This path Γ is defined by the equation
�(zf((w)) = �(zf(w0)). The conditions under which the deformation C → Γ
is possible depend on the original path C, on the region of analyticity of the
functions f(w) and g(w) and on the phase of the complex parameter z. In
fact, the path of steepest descent is a path where ezf(w) does not oscillate and
concentrates at w0, the concentration being greater for larger values of |z|. We
explain in Figure 1 the situation that the new path Γ, a steepest descent path,
runs through w0. For a comprehensive description of this method we refer the
reader once more to Wong’s book [[10], chap. 2. sec. 4] or [1].

The first step of the Steepest Descents method consists in the deformation
C → Γ. As in the Laplace’s method, the second step consists in a suitable
change of variable and local expansions of f(w) and g(w) at w0. As well as in
Laplace’s method, this change of variable depends on the multiplicity of w0 as
zero of f ′(w) [[10], chap. 2. secs. 1, 4].
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Figure 1: Typical plot of the real part of f(w) over a simple saddle point w0.
Crossing this point we can find a steepest ascent path (dashed lines) and a steepest
descent path Γ.

In the remaining of the paper, we will call asymptotic points to both, the
critical points of f(w) and the end points of C (if a given point is both, a
critical point and an end point, we call it critical point). If the function f(w)
has not one, but several asymptotic points: {w1, w2, . . . }, then the dominant
contribution to F (z) comes from the most relevant asymptotic point. This is
defined as the asymptotic point located on C (or on Γ if the deformation C → Γ
is necessary) at which �(zf(w)) is maximal. Then the asymptotic expansion
of F (z) may be derived applying the Laplace’s method (when C = [a, b] ⊂ R

and f(w) is real) or the Steepest Descents method (when C ⊂ C and f(w) is
complex) at that relevant asymptotic point. It may happens that this relevant
asymptotic point is not unique. In this case, we must apply Laplace’s method
or Steepest Descents method at all of the relevant asymptotic points.

It is impossible to resume in few words the importance that these methods
have had to derive asymptotic approximations of integrals in general, and
of special functions in particular. In this way, it is very difficult to give an
exhaustive list of the thousands of publications devoted to construct, generalize
or apply to specific examples these methods. Consider that most of the known
asymptotic expansions of special functions derived from integrals have been
obtained by using one of these methods.

The main technical complication in the application of these methods lies
in the identification of the steepest descents paths (in the Steepest Descents
method) and in the change of variable (in both methods). Another source
of complication is the existence of more than one relevant asymptotic point.
Recently, some authors have suggested by means of specific examples that
these methods may be simplified. The idea is just to expand g(w) and perhaps
also part of ezf(w) in (1) at the relevant asymptotic point(s) of f(w) without
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any deformation of the integration path C neither any change of variables.
In this way, Paris has derived new and easier uniform asymptotic expansions
of the incomplete gamma functions [8]. Temme and López have obtained
quite easy uniform expansions of the Bernoulli, Euler, Charlier, Laguerre and
Jacobi polynomials [4], [5]. But the proof of the asymptotic character of the
expansions just mentioned is quite restricted to the examples on hand. In [8]
that proof is based on a quite specific integral representation of the incomplete
gamma functions, whereas in [4] and [5] the proofs are based on the “a priory”
accidental convergence of the expansions for certain values of the uniformity
parameter.

The purpose of this paper is to show that the success of that simplified
version of the Laplace’s or Steepest Descents methods used in those examples is
not accidental and that works under mild conditions on f(w) and g(w). Then,
we propose here a simplified version of the Laplace’s or Steepest Descents
methods with a simpler application that, in many situations, produces easier
asymptotic expansions. We show that, if the Laplace or Steepest Descents
methods apply to (1), then this simplified version applies too. It does not
require any change of variable. Basically, it consists in an expansion of g(w)
at the relevant asymptotic point(s) of f(w) and an interchange of sum and
integral.

In the following section we introduce the method for the simplest case of
having one unique asymptotic point. In section 3 we generalize the method
to the case of two asymptotic points with the same multiplicity. In section 4
we consider an arbitrary number of asymptotic points with arbitrary multi-
plicities. Two examples are shown as illustration in section 5. In section 6 we
discuss the uniform character of the method. In section 7 we write some final
remarks and establish some conclusions.

2 The simplest case: one asymptotic point

For convenience, we rewrite (1) in the form

F (z) ≡
∫ b

a

ezf(w)g(w)h(w)dw, z → ∞, �z ≥ z0 > 0, (2)

where a and b are the end points of the path C (a and b may be finite or infinite
and a = b if C is a closed loop). The functions f(w), g(w) and h(w) satisfy the
hypotheses required by either, the Laplace’s method or the Steepest Descents
method. To be more precise:
i) f(w), g(w) and h(w) are analytic between C and Γ if a deformation of C to
a steepest descent path Γ is required.
ii) The function f(w) in (2) has only one asymptotic point w0: �[z(f(w) −
f(w0))] < 0 on C and is bounded away from zero uniformly with respect to z on
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C except at w = w0. If C = [a, b] ⊂ R, f(w) is real and m−times differentiable
on [a, b] and w0 ∈ [a, b], then w0 may be a critical point of multiplicity m − 1
with m even:

f ′(w0) = f ′′(w0) = . . . = f (m−1)(w0) = 0, f (m)(w0) < 0,

or an end point if a 
= b: f ′(w0) < 0 if w0 = a or f ′(w0) > 0 if w0 = b (in
this case m = 1). If f(w) is complex (analytic between C and Γ), then w0 is
a saddle point of f of multiplicity m − 1:

f ′(w0) = f ′′(w0) = . . . = f (m−1)(w0) = 0, f (m)(w0) 
= 0.

iii) The function g(w) has a Tayor expansion at w0:

g(w) =

n−1∑
k=0

ak(w − w0)
k + gn(w), ak ≡ g(k)(w0)

k!
, n = 1, 2, 3, . . . (3)

with gn(w) = O((w − w0)
n) when w → w0.

iv) h(w) is continuous on C \ {w0} and h(w) = O((w − w0)
α) when w → w0

with �α > −1.
v) The integral (2) and the integrals

∫ b

a
ezf(w)wkh(w)dw, k = 0, 1, 2, . . . con-

verge absolutely and uniformly with respect to z. The same holds for the
integrals

∫
Γ
ezf(w)wkh(w)dw if the deformation C → Γ is required.

If f(w) is real and smooth enough on C, and w0 ∈ C, Laplace’s method
says that we must perform in (2) the change of variable w → u defined by
f(w)−f(w0) = f (m)(w0)u and then approximate w′(u)g(w(u))h(w(u)) at w =
w0 (u = 0). If w0 /∈ C and f(w) and g(w)h(w) are analytic between C and
Γ, the Steepest Descents method says that we must deform the contour C to
the steepest descent path Γ (which runs throw w0) and then apply Laplace’s
method to the resulting integral over Γ. In any case, both methods tell us
that the main contribution of the integrand in (2) to the value of the integral
comes from the neighbourhood of the point w0. We use this idea here in a
more simple way: we approximate g(w) at w = w0 but without any change
of variable neither a deformation of the contour C. We just introduce the
expansion (3) in (2) and interchange sum and integral:

∫ b

a

ezf(w)g(w)h(w)dw =

n−1∑
k=0

akΦk(z) + Rn(z), (4)

with

Φk(z) ≡
∫ b

a

ezf(w)h(w)(w − w0)
kdw (5)



302 Chelo Ferreira et al

and

Rn(z) ≡
∫ b

a

ezf(w)h(w)gn(w)dw. (6)

These integrals exist thanks to the hypothesis v). Using iv) we see that

h(w)(w − w0)
k = O((w − w0)

k+α), w → w0,

h(w)gn(w) = O((w − w0)
n+α), w → w0.

(7)

From hypothesis i), ii), iv) and v) and (7) we see that Laplace’s or the Steep-
est Descents method can be applied to the integrals (5) and (6) to get their
asymptotic behaviour for large z [[10], chap. 2, secs. 1 or 4]:

Φk(z) = O
(

ezf(w0)

z(k+α+1)/m

)
, Rn(z) = O

(
ezf(w0)

z(n+α+1)/m

)
, z → ∞. (8)

Therefore, (4)-(6) is an asymptotic expansion of F (z) for large z.

3 A first generalization: Two asymptotic points

Suppose that f(w) has two relevant asymptotic points. The philosophy con-
tained in the above section tells us that we need to approach g(w) at both
asymptotic points. Then, condition ii) in that section is replaced by:
ii’) The function f(w) in (2) has two distinct asymptotic points w1 and w2 with
�(f(w1)) < �(f(w2)) (w2 is dominant) or �(f(w1)) = �(f(w2)) (both points
are relevant). This means that �[z(f(w) − f(w1))] < 0 on C and is bounded
away from zero uniformly with respect to z on C except at w = w1 (and except
at w = w2 if �(f(w1)) = �(f(w2))). For simplicity in the exposition and for its
particular interest (see section 5 below) we consider in this section that both
asymptotic points have the same multiplicity and postpone the general case
to the next section. If C = [a, b] ⊂ R, f(w) is real and m−times differentiable
on [a, b] and w1 ∈ [a, b] and w2 ∈ [a, b], then w1 and w2 may be critical points
of multiplicity m − 1 with m even:

f ′(ws) = f ′′(ws) = . . . = f (m−1)(ws) = 0, f (m)(ws) < 0, s = 1, 2,

or end points if a 
= b: f ′(w1) < 0 if w1 = a or f ′(w2) > 0 if w2 = b (in this
case m = 1). If f(w) is complex (analytic between C and Γ), then w1 and w2

are saddle points of f of multiplicity m − 1:

f ′(ws) = f ′′(ws) = . . . = f (m−1)(ws) = 0, f (m)(ws) 
= 0, s = 1, 2.

If �(f(w1)) = �(f(w2)), the main contribution of the integrand in (2) to
the value of the integral comes from the neighbourhood of both points w1 and
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w2. Then, we need to approximate g(w) at both of them simultaneously and
with the same accuracy. This means that we need the simultaneous Taylor
expansion of g(w) at w1 and w2. A detailed exposition of this may be found
in [6]. We need to replace condition iii) and iv) in section 2 by:
iii’) The function g(w) has a two-point Taylor expansion at w1 and w2:

g(w) =

n−1∑
k=0

(ak + bkw)(w − w1)
k(w − w2)

k + gn(w), n = 1, 2, 3, . . . , (9)

with

ak ≡ −w1ck(w1, w2) − w2ck(w2, w1), bk ≡ ck(w1, w2) + ck(w2, w1), (10)

c0(w1, w2) ≡ g(w2)

w2 − w1

(11)

and, for n = 1, 2, 3, . . . ,

cn(w1, w2) ≡
n∑

k=0

(n + k − 1)!

k!(n − k)!

(−1)n+1ng(n−k)(w2) + (−1)kkg(n−k)(w1)

n!(w1 − w2)n+k+1
. (12)

The remainder term verifies gn(w) = O((w−w1)
n) when w → w1 and gn(w) =

O((w − w2)
n) when w → w2.

iv’) h(w) is continuous on C\{w1, w2} and h(w) = O((w−w1)
α1) when w → w1

and h(w) = O((w − w2)
α2) when w → w2 with �α1 > −1 and �α2 > −1.

Introducing the expansion (9) in (2) and interchanging sum and integral
we obtain

∫ b

a

ezf(w)g(w)h(w)dw =

n−1∑
k=0

[akΦk(z) + bkΨk(z)] + Rn(z), (13)

with

Φk(z) ≡
∫ b

a

ezf(w)h(w)(w − w1)
k(w − w2)

kdw,

Ψk(z) ≡
∫ b

a

ezf(w)h(w)(w − w1)
k(w − w2)

kwdw

(14)

and

Rn(z) ≡
∫ b

a

ezf(w)h(w)gn(w)dw. (15)
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These integrals exist thanks to hypothesis v). Using iv’) in these integrals we
have that

h(w)(w − w1)
k(w − w2)

k = O((w − w1)
k+α1), w → w1

h(w)(w − w1)
k(w − w2)

k = O((w − w2)
k+α2), w → w2

h(w)gn(w) = O((w − w1)
n+α1), w → w1

h(w)gn(w) = O((w − w2)
n+α2), w → w2.

(16)

From hypothesis i), ii’), iv’) and v) and (16) we see that Laplace’s method or
the Steepest Descents method can be applied to the integrals (14) and (15) to
get their asymptotic behaviour for large z [[10], chap.2, secs. 1 and 4]:

Φk(z), Ψk(z) = O
(

ezf(w2)

z(k+α+1)/m

)
, z → ∞, (17)

where α ≡ min{α1, α2}. And

Rn(z) = O
(

ezf(w2)

z(n+α+1)/m

)
, z → ∞. (18)

Therefore, (13)-(15) is an asymptotic expansion of F (z) for large z.
If the multiplicities of w1 and w2 as zeros of f ′(w) are different, the above

approach is a little bit more cumbersome. We consider this situation in the
following section, where we also consider N relevant asymptotic points.

4 The general case: several asymptotic points

We consider in this section the most general case: f(w) has N asymptotic
points of multiplicities m1 − 1, . . . , mN − 1. Condition ii) in section 2 must be
replaced by:
ii”) The function f(w) in (2) has N distinct asymptotic points w1, w2, . . . , wN

of multiplicities m1 − 1, m2 − 1, . . . , mN − 1 respectively with �(f(w1)) ≤
. . . ≤ �(f(wN)) (the number of relevant asymptotic points may be 1, 2, . . . ,
or N). This means that �[z(f(w) − f(w1))] < 0 on C and is bounded away
from zero uniformly with respect to z on C except at w = w1 (and perhaps
at w2, w3, . . . ). If C = [a, b] ⊂ R, f(w) is real and m−times differentiable on
[a, b] and ws ∈ [a, b] for s = 1, 2, 3, . . . , N and every ws may be a critical point
of multiplicity ms − 1 with ms even:

f ′(ws) = f ′′(ws) = . . . = f (ms−1)(ws) = 0, f (ms)(ws) < 0, s = 1, 2, . . . , N,

or and end point if a 
= b: f ′(ws) < 0 if ws = a or f ′(ws) > 0 if ws = b for
some s (in this case ms = 1). If f(w) is complex (analytic between C and Γ),
then ws are saddle points of multiplicity ms − 1:

f ′(ws) = f ′′(ws) = . . . = f (ms−1)(ws) = 0, f (ms)(ws) 
= 0, s = 1, 2, 3, . . . , N.
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The main contribution of the integrand in (2) to the value of the integral
comes from the neighbourhood of all of the relevant asymptotic points. Then,
we need to approximate g(w) at all of them simultaneously. But as it will be
clear below, the degree of accuracy in the approximation of g(w) at ws must
depend on the multiplicity of ws as zero of f ′(w). This means that we need
the multi-point Taylor expansion of g(w) at the points w1, w2, . . . ,wN with w1

repeated m1 times, w2 repeated m2 times, . . . . A detailed exposition of this
may be found in [7]. Then, conditions iii) and iv) in section 2 must be replaced
by:
iii”) The function g(w) has a multi-point Taylor expansion at w1 (m1 times),
w2 (m2 times), . . . , wN (mN times):

g(w) =
n−1∑
k=0

pk(w)
N∏

s=1

(w − ws)
kms + gn(w), n = 1, 2, 3, . . . (19)

where pk(w) are polynomials of degree p ≡ m1 + m2 + . . . + mN − 1:

pk(w) = a
(k)
0 + a

(k)
1 w + . . . + a(k)

p wp

and gn(w) = O((w−ws)
nms) when w → ws. Coefficients a

(k)
l may be calculated

taking into account that the polynomial in the right hand side of (19) is the
interpolation polynomial of g(w) at w1, w2, . . . ,wN with data g(ws), g′(ws), . . . ,
g(nms−1)(ws), s = 1, 2, . . . , N . Or else [7]:

pk(w) ≡
N∑

j=1

∏N
s=1,s �=j(w − ws)

ms∏N
s=1,s �=j(wj − ws)ms

mj−1∑
l=0

ak,j,l(w − wj)
l, (20)

with

ak,j,l =
1

(kmj + l)!

dkmj+l

dwkmj+l

[
g(w)∏N

s=1,s �=j(w − ws)kms

]∣∣∣∣∣
w=wj

+
N∑

r=1,r �=j

1

(kmk − 1)!

dkmk−1

dwkmj+l

[
g(w)

(w − wj)l+1
∏N

s=1,s �=r(w − ws)kms

]∣∣∣∣∣
w=wr

.

(21)

iv”) h(w) is continuous on C \{ws; s = 1, 2, . . . , N} and h(w) = O((w−ws)
αs)

when w → ws with �αs > −1.
Introducing the expansion (19) in (2) and interchanging sum and integral

we obtain ∫ b

a

ezf(w)h(w)g(w)dw =
n−1∑
k=0

p∑
l=1

a
(k)
l Φ

(l)
k (z) + Rn(z), (22)
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with

Φ
(l)
k (z) ≡

∫ b

a

ezf(w)wlh(w)
N∏

s=1

(w − ws)
kmsdw, l = 0, 1, 2, . . . , p (23)

and

Rn(z) ≡
∫ b

a

ezf(w)h(w)gn(w)dw. (24)

These integrals exist thanks to the hypothesis v). Using iv”) we see that

h(w)(w − ws)
kms = O((w − ws)

kms+αs), w → ws

h(w)gn(w) = O((w − ws)
nms+αs), w → ws.

(25)

From hypothesis i), ii”), iv”) and v) and (25) we see that Laplace’s method or
the Steepest Descents method can be applied to the integrals (23) and (24) to
get their asymptotic behaviour for large z [[10], chap. 2, secs. 1 and 4]:

Φ
(l)
k (z) = O

(
ezf(wN )

zk+ρ

)
, z → ∞, l = 0, 1, 2, . . . , p, (26)

with ρ ≡ mins{(αs + 1)/ms}. And

Rn(z) = O
(

ezf(wN )

zn+ρ

)
, z → ∞. (27)

Therefore, (22)-(24) is an asymptotic expansion of F (z) for large z.

5 Examples

The method described in sections 2, 3 and 4 is extraordinarily simple. But
this simplicity does not mean that it is not a powerful method. We consider in
this section two examples: Bernoulli [4] and Jacobi [5] polynomials which show
the power of the method (and of course its simplicity). We do not improve
very much here the asymptotic features of the expansions given in [4], [5] but
we think that they are quite illustrative examples of the method. The proofs
given here are easier and sorter than the proofs given in [4] and [5].

5.1 Bernoulli polynomials

Consider the following integral representation of the Bernoulli polynomials:

Bn

(
z +

1

2

)
=

n!

2πi

∫
C

wewz

2 sinh(w/2)

dw

wn+1
, (28)
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where the contour C encircles the origin in the counterclockwise direction and
contains no poles of w sinh−1(w/2). The shift 1/2 in the variable z is introduced
in order to have reflection symmetry z → −z in the polynomials. We want to
approximate Bn(z) for large z and n and write (28) in the form

Bn

(
nz +

1

2

)
=

n!

2πi

∫
C

enf(w)h(w)g(w)dw, n → ∞ (29)

with f(w) = wz − log w, h(w) = 1/w and g(w) = (w/2)/ sinh(w/2). The
unique saddle point of f(w) is w0 = 1/z and has multiplicity 1. Applying the
method described in section 2 we obtain the asymptotic expansion (4)-(6) of
Bn(nz + 1/2) for large n (with α = 0). For simplicity we only write explicitly
the first two terms of the expansion:

Bn

(
nz +

1

2

)
=

nnzn−1

2 sinh(1/2z)

{
1

+

[
1 + 4

(
z − 1

2
coth

(
1

2z

))
coth

(
1

2z

)]
1

8nz2
+ O

(
1

n2

)}
.

(30)

This is an asymptotic expansion for large n for those values of z for which the
Steepest Descents method can be applied to the integral (29). The steepest
ascent and descent paths of f(w) are (see fig. 2(a)):⎧⎨
⎩

w = re−iArg(z), 0 ≤ r < ∞, (steepest ascent path)

w =
(θ + Arg(z))eiθ

|z| sin(θ + Arg(z))
, θ ∈ (−π − Arg(z), π − Arg(z)), (steepest descent path).

The real part of f(w) in (29) is negative over a straight path joining the ends of
the steepest descent path at the infinity (dashed line in fig. 2(a)). Therefore,
the contour C may be deformed into the steepest descent path Γ whenever the
poles ±2πi of g(w) are not inside Γ. This happens for |Arg(z)| < 2π�z−π/2.

5.2 Jacobi polynomials

Consider the following integral representation of the Jacobi polynomials for
x ∈ (−1, 1):

P (α,β)
n (x) =

1

2πi

(−1)n

2n

∫
C

(1 − w − x)α(1 + w + x)β

(1 − x)α(1 + x)β
enf(x,w)dw

w
, (31)

where the function f(x,w) is defined by

f(x,w) ≡ log(1 + w + x) + log(1 − w − x) − log w (32)
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and C is a simple closed contour, in the positive sense, around w = 0. The
points w = −x ± 1 are outside the contour, and (1 − w − x)α/(1 − x)α and
(1 + w + x)β/(1 + x)β are to be taken as unity when w = 0. We want to

approximate P
(α,β)
n (x) for large n.

The function f(x,w) has two conjugate equally important (relevant) saddle
points of multiplicity 1:

w1 = i
√

1 − x2, w2 = −i
√

1 − x2. (33)

Applying the method described in section 3 with g(w) = (1−w−x)α(1+w+x)β

and h(w) = 1/w, we obtain the asymptotic expansion (see [5] for details):

P (α,β)
n (x) =

∞∑
k=0

[akΦk(x, n) + bkΨk(x, n)] , (34)

where ak and bk are given in (10)-(12) and Φk(n) and Ψk(n) are given in (14).
For example,

Φ0(x, n) =
(2n)!

22n(n!)2
Tn(x), Ψ0(x, n) =

(2n − 1)!

22n−1n! (n − 1)!
(x2 − 1)Un−1(x),

(35)

where Tn(x) and Un(x) are Chebyshev polynomials. Then,

P (α,β)
n (x) =

(2n)!

22n(n!)2

{
� [

(1 − x + i
√

1 − x2)α+1/2(1 + x − i
√

1 − x2)β+1/2
]

(1 − x)α+1/2(1 + x)β+1/2
Tn(x)

−� [
(1 − x + i

√
1 − x2)α+1/2(1 + x − i

√
1 − x2)β+1/2

]
(1 − x)α+1/2(1 + x)β+1/2

2(n − 1)

2n − 1

√
1 − x2Un−1(x)

+O
(

1

n

)}
.

The expansion (34) is an asymptotic expansion for large n for those values of
x for which the Steepest Descents method can be applied to the integral (31).
The steepest ascent and descent paths of f(w) are given by the functions r±(θ)
solution of the equations (see fig. 2(b)):

r2 sin(2θ)+2xr sin θ = [1+r2 sin2 θ−(x+r cos θ)2] tan

[
−θ ± π

2
± arctan

(
x√

1 − x2

)]
.

The steepest descent path does not cross the branches (−∞,−x − 1) and
(1−x,∞) of g(w). Therefore, the contour C may be deformed into the steepest
descent path Γ for −1 < x < 1.



The Laplace’s and Steepest Descents Methods 309

Re(w)

Im(w)

C z
1

2   i

2   i-

Im(w)

Re(w)

Steepest ascent path

Steepest descent path

1-xi

1-x

-1-x

2

1-xi 2-

C

(a) (b)

Figure 2: (a) Steepest descent path of the function f(w) = zw − log w for positive
z. The condition |Arg(z)| < 2π�z − π/2 guarantees that the poles of the function
(w/2)/ sinh(w/2) lie outside the steepest descent path Γ and the contour C may be
deformed into Γ. (b) Steepest descent and ascent paths of the function (32). The
branch points of the function g(w) = (1−w−x)α(1+w+x)β lie outside the steepest
descent path Γ and the contour C may be deformed into Γ.

6 Uniformity aspects of the method

If the function f(w) in the integrand (2) contains a real parameter, say a,
the saddle points of f(w) = f(w, a) may depend on a. Then, it may happen
that when a crosses a critical value, an asymptotic point of f(w) changes
its character from non-relevant to relevant or vice-versa, or that two relevant
asymptotic points coalesce, . . . . That is, the asymptotic behaviour of the
integral may change drastically at certain values of a. It is well known that,
in this case, the standard Laplace’s or Steepest Descents methods must be
modified to get asymptotic expansions of (2) uniformly valid for varying a [[10],
chap. 7]. That modifications depend on the kind of coalescence of asymptotic
points. We are speaking about the well known uniform asymptotic methods.
For example, if two saddle points coalesce, then (2) may be approximated
by Airy functions; if a saddle point coalesce with and end point, (2) may
approximated by parabolic cylinder functions, . . . .

The method described in sections 2-4 does not need any modification be-
cause it is already a uniform method. Consider the following two possibilities
(not mutually excluding) for the critical points of f(w, a) when a crosses a
certain critical value a∗:

a) Two or more relevant asymptotic points (critical or end points) coalesce.
In this case the method described in section 4 is uniform. This is because
the expansion of g(w) is simultaneous at all of those asymptotic points
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and, if they coalesce, the formulation of the method doesn’t change: if
a critical point w1 of multiplicity m1 coalesce with another critical point
w2 of multiplicity m2, then the factor (w − w1)

nm1(w − w2)
nm2 in the

multi-Taylor expansion (19) becomes the factor (w − w1)
n(m1+m2). The

only tricky point here is that if w1 → w2, terms of the form 0/0 appear
in the coefficients of the polynomial pk(w) defined in (20). Then, this
polynomial must be defined as the limit w1 → w2 of the right hand side
of (20) [7].

b) One ore more asymptotic points ws(a) of f(w, a) change their charac-
ter from non-relevant to relevant or vice-versa when a crosses a certain
critical value a∗. In this case the method described in section 4 is obvi-
ously uniform. The only point here is that the corresponding exponential
factors ezf(ws,a) in the expansion of F (z) change their character from rel-
evant to non-relevant or viceversa when a crosses a∗.

The following example shows the intrinsic uniform character of the method.

6.1 A generalized confluent hypergeometric function

We want to approximate the following integral:

F (α, b, c, x) =

∫ ∞

0

e−xt(1 + t)b(c + t)αdt, x > 0, c ≥ 0, α, b ∈ R, (36)

for large x and b. If c = 0 then α > −1. (For c = 0, F is a confluent
hypergeometric function: F (α, b, 0, x) = U(α + 1, b + α + 1, x)). We write

F (α, b, c, x) =

∫ ∞

0

exf(t,a)g(t)dt, (37)

where g(t) = (c + t)α, the phase function is f(t, a) = a log(1 + t) − t and
a ≡ b/x ∈ (−∞,∞) is the uniformity parameter. The unique critical point
of this phase function is t0 = a − 1 and has multiplicity 1. It coalesces with
the end point t = 0 (which has multiplicity 0) when a = 1. The character of
these points (relevant or non-relevant) depend on the value of a (see fig. 3).
We need the three-point Taylor expansion of g(t) at t = 0 once and at t = t0
twice. From formulas (19)-(21) with w replaced by t and w1 = 0, m1 = 1,
w2 = a − 1 and m2 = 2:

g(t) =

n−1∑
k=0

(a
(k)
0 + a

(k)
1 t + a

(k)
2 t2)tk(t − a + 1)2k + gn(t).
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Coefficients a
(k)
l , l = 0, 1, 2, are regular when t0 → 0 (a → 1) if c > 0 or if

c = 0 and n ≤ α [6]. For example, a
(0)
0 = cα,

a
(0)
1 =

{
(c+a−1)α−1[2c+α+a(2−α)−2]

a−1
if a 
= 1,

αcα−1 if a = 1,

and

a
(0)
2 =

{
α(a−1)(c+a−1)α−1+cα−(c+a−1)α

(a−1)2
if a 
= 1,

α(α−1)cα−2

2
if a = 1.

The functions Φ
(0)
0 (x), Φ

(1)
0 (x) and Φ

(2)
0 (x) in (23) are

Φ
(0)
0 (x) =

∫ ∞

0

e−xt(1 + t)bdt =
ex

xb+1
Γ(b + 1, x),

Φ
(1)
0 (x) =

∫ ∞

0

e−xt(1 + t)btdt =
ex

xb+1

[
Γ(b + 2, x)

x
− Γ(b + 1, x)

]
,

Φ
(2)
0 (x) =

∫ ∞

0

e−xt(1+t)bt2dt =
ex

xb+1

[
Γ(b + 3, x)

x2
− 2

Γ(b + 2, x)

x
+ Γ(b + 1, x)

]
.

Therefore, for large x,

F (α, b, c, x) =
ex

xb+1
Γ(b + 1, x)

{
cα + a

(0)
1

[
Γ(b + 2, x)

xΓ(b + 1, x)
− 1

]

+a
(0)
2

[
Γ(b + 3, x)

x2Γ(b + 1, x)
− 2

Γ(b + 2, x)

xΓ(b + 1, x)
+ 1

]
+ O

(
1

x

)}

uniformly for a = b/x ∈ [a0, a1] with a0, a1 ∈ R and α ≥ 2 if c = 0.

7 Concluding remarks

The asymptotic expansion of the integral (2) for large z is determined by
the number, multiplicity and nature of the relevant asymptotic points of the
exponent f(w). Then, only the value of h(w)g(w) around those points is of
importance and a simultaneous approximation of g(w) at those points is in
order. But this approximation must have an appropriate contact order at
each of those points according to their multiplicity. This is achieved by the
multi-point Taylor expansion of g(w) at those points counting multiplicities
[7].

The method described in this paper only invokes the classical Laplace’s
or Steepest Descents methods to show the asymptotic behaviour of the terms
of the expansion and of the remainder. The asymptotic expansion is derived
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0
2

t

f(t)

1
a=2

a=1

a=0

Figure 3: Plot of f(t) = a log(1 + t) − t for t ∈ [0, 2] and three values of a. The
relevant critical point (located at t = a−1) may be an interior point of the integration
path, and end point or an exterior point depending on the uniformity parameter a.
The critical point t = a − 1 is the relevant asymptotic point for a > 1, whereas the
end point t = 0 is the relevant asymptotic point for a < 1. Both coalesce (and are
relevant) if a = 1.

quite easily by just introducing in (2) the multi-point Taylor expansion of g(w)
at the asymptotic points (19) and interchanging sum and integral to get (22).

We have split out a factor h(w) from g(w) in the integrand in (2). We did
this in order to consider the following possibility: one factor of the integrand
(g(w)) has a multi-point Taylor expansion at the asymptotic points of f(w) and
the other factor (h(w)) has not. Nevertheless, the integrability of the integral
(2) requires a not too wild behaviour of h(w) at those points (conditions iv),
iv’), iv”)).

The number of different asymptotic sequences involved in the expansions
Φ

(l)
k (z) equals the number of asymptotic points of the exponent f(w) in (2).

The multiplicities of those asymptotic points determine the asymptotic be-
haviour of the terms of the asymptotic sequences (the number ρ in (26).

The expansions given in [4] and [5] are given in terms of an asymptotic
sequence Φk(n) which verifies Φk(n) = O(n�k/2�−k) as n → ∞. The proof of
this is based in a complicated recurrence for the Φk(n). Here we have seen
that, in general, the asymptotic property of the Φk(n) is smoother: Φk(n) =
O(n−k/2).

Standard Laplace’s and Steepest Descents methods have been used to de-
rive many (uniform and non-uniform) asymptotic expansions of special func-
tions. Therefore, the alternative method described in this paper may be used
to derive alternative asymptotic expansions of special functions. The exam-
ples given above show that, despite the apparent simplicity of the method, it
is worth to consider this technique to generate new asymptotic expansions of
special functions.
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In the standard Laplace’s or Saddle point methods, the asymptotic expan-
sion of the integral has a form similar to (4). The sequence Φk(z) in those
methods is usually very simple: it is proportional to z−k. But the coefficients
ak are usually very complicated: they are the Taylor coefficients of a com-
plicated function obtained after a change of variable (including a jacobian).
On the other hand, the sequence Φk(z) in this method is more complicated
(formula (5)) but the coefficients ak are simpler: they are the Taylor coeffi-
cients of the function g(w) at w = w0 (formula (3)). We can say that, with
respect to the standard methods, in this method there is a movement of dif-
ficulty from the coefficients ak to the sequence Φk(z). The complexity of the
sequence Φk(z) will depend of course on the precise example analyzed (in all
the examples considered [3], [4], [5] and the example 6.1 the sequence Φk(z)
turns out to be very simple).

If the integration path C in the definition of F (z) in (2) contain relevant
and non-relevant asymptotic points and uniformity is not a problem, we do not
need to consider all of the asymptotic points simultaneously in the method.
We just need to divide the integration path C in several pieces containing less
asymptotic points. Of course, the dominant asymptotic behaviour comes from
the piece of C containing the dominant asymptotic points. The contribution
of the remaining pieces will be exponentially subdominant.

It has been pointed out in section 6 that this method is intrinsically uni-
form. Classical uniform methods based on standard Laplace’s or Steepest
Descents methods are strong modifications of the corresponding non-uniform
methods. Moreover, there are several kind of modifications (and hence of
uniform methods) depending on the kind of coalescence of asymptotic points
(saddle point near an end point, two coalescing saddle points, . . . ). This is so
because every uniform version of the standard Laplace’s or Steepest Descents
methods requires an specific change of variable. But in the method described
above we do not perform any change of variable, just expand g(w) at the
asymptotic points, whatever their dependence of the parameter a described
in section 6 is. Then, the method is intrinsically uniform, and moreover, it is
unique independently of the kind of coalescence of asymptotic points.

Another source of asymptotic points (relevant for an asymptotic analysis)
are the (possible) singularities of h(w)g(w). We believe that in this case we
just may introduce this new kind of asymptotic points in the list of asymptotic
points and apply the above ideas. We think that in this case the multi-point
Taylor expansion of g(w) must be replaced by a multi-point Laurent or Taylor-
Laurent expansion [7]. This is subject of further investigation.
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