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Abstract

We consider the incomplete gamma functions�(a, z) andγ (a, z) for large values of their vari
ablesa and z. We derive four complementary asymptotic expansions which approximate
functions for large|a| and |z| with |Arg(a)| � π and |Arg(z)| < π . Three of these expansions a
given in terms of decreasing powers ofa−z and are not valid near the transition pointa = z. A fourth
expansion is given in terms of decreasing powers ofa and error functions and is valid fora nearz.
These expansions have a simpler structure than other expansions previously given in the lite
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Incomplete gamma functions are defined by the integrals

�(a, z) ≡
∞∫
z

e−t ta−1 dt, z ∈ C \ R
−, a ∈ C, (1)
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γ (a, z) ≡
z∫

0

e−t ta−1 dt, z ∈ C \ R
−, �a > 0. (2)

In both definitions, the integration paths do not cross the negative real axis. These
tions play an important role in applied mathematics, physics, statistics and other sc
disciplines.

In this paper we are concerned with their approximation for large values ofa andz. The
asymptotic expansion of�(a, z) andγ (a, z) when eithera or z is large is well known and
quite straightforward (see for example [11, Section 11.2.1]). When both,a andz are large,
the situation is different. We can find several uniform asymptotic expansions in the
ture that are more complicated than the non-uniform expansions. That complexity is
evident at the transition pointa = z, where the asymptotic structure of�(a, z) andγ (a, z)

suffers an abrupt change. Several authors have obtained different asymptotic expan
these functions for largea andz valid in different regions of Arg(a) and of Arg(z). Some
of them are not valid near the transition point [2,6,12]. Other expansions are valid a
point [7,9,10,12], [11, Section 11.2.4], and involve a complementary error function w
takes account of that abrupt change in the asymptotic behaviour. Many of those
sions are based on standard uniform asymptotic methods for integrals and are com
owing to the difficult changes of variables involved in those methods. But recently,
has suggested a different uniform asymptotic treatment for�(a, z) andγ (a, z) which sim-
plifies the analysis [8]. His method does not require any change of variable, but ju
appropriate factorization of the integrand and an expansion of one of the factors. Pa
obtained in this way simpler uniform asymptotic expansions of�(a, z) andγ (a, z) valid at
the transition pointa = z which involve a complementary error function. Moreover, Pa
explains how the expansions given in [2,6,12] (not valid ata = z) can be derived from hi
expansions.

On the other hand, Temme and López have proposed in specific examples (Be
Euler, Charlier, Laguerre and Jacobi polynomials) a modification of the saddle
method which simplifies the analysis [3,5]. This simplification consists of just exp
ing the non-exponential part of the integrand at the saddle point(s) of the exponenti
avoiding any change of variable. In this way, simpler uniform asymptotic expansions
the classical ones are obtained for those polynomials.

In this paper we combine both simplifier ideas (the one of Paris and the one of T
and López) in order to derive quite simple asymptotic expansions of�(a, z) andγ (a, z)

for largea andz. Our strategy consists of: (i) a factorization of the integrand in�(a, z)

or γ (a, z) in an exponential factor times another factor and (ii) an expansion of this se
factor at the asymptotically relevant point of the exponential factor (saddle point o
point). The main benefit of this procedure is the derivation of easy asymptotic expa
with easily computable coefficients. We require three or four different expansions to
the region(a, z) ∈ C × (C \ R

−) depending on the value ofa − z. Because of the relatio
�(a, z) + γ (a, z) = �(a) valid for a ∈ C \ Z

−, we will only derive expansions for eithe

�(a, z) or γ (a, z) at every one of the four different regions mentioned above.
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In the following section we consider�(a, z) and derive an expansion valid in the regi
�a < 0 and away from the transition pointa = z. In Section 3 we derive an expansi
valid in the region�a > −1, �(a) > �(z) and away from the transition pointa = z. In
Section 4 we derive an expansion valid in the region�a > −1,�(a) < �(z) and away from
the transition pointa = z. In Section 5 we obtain an asymptotic expansion valid around
transition pointa = z. In Section 6 we present some conclusions and a few commen
what follows Arg(z) denotes the principal argument ofz: Arg(z) ∈ (−π,π].

2. �(a) < 0 and away from the transition point

We consider in this section the function�(a, z) and an integral representation differe
from (1) [11, p. 280, Eq. (11.13)]:

�(a, z) = e−z

�(1− a)

∞∫
0

e−zt t−a

1+ t
dt, �a < 0, �z > 0. (3)

After the change of variablet = u/z, it reads

�(a, z) = zae−z

�(1− a)

z∞∫
0

e−uu−a

u + z
du, �a < 0, �z > 0.

The integrand is an analytic function ofu in the sector Arg(u) ∈ (0,Arg(z)). In that sector
�u > 0. Then, using the Cauchy’s Residue Theorem we have

�(a, z) = zae−z

�(1− a)

∞∫
0

e−uu−a

u + z
du, �a < 0,

∣∣Arg(z)
∣∣ < π/2.

The right-hand side above is an analytic function ofz in the sector|Arg(z)| < π and there-
fore defines the analytic continuation of�(a, z) to that sector. Thus, in what follows, w
assume|Arg(z)| < π .

We perform the change of variableu = −at in the above integral:

�(a, z) =
(

−a

z

)1−a
e−z

�(1− a)

−∞/a∫
0

eat t−a

1− αt
dt, α ≡ a

z
.

The integrand is an analytic function oft in the sector Arg(t) ∈ (0,Arg(−1/a)) and has
a simple pole att = α−1. This pole is in that sector if Arg(z)/Arg(a) � 1. In that sector
�(at) < 0. Then, using the Cauchy’s Residue Theorem we have

2πiR iπa sgn(Arg(a))
( )
�(a, z) = �0(a, z) −
�(1− a)

e sgn Arg(a) , (4)
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where

�0(a, z) ≡
(

−a

z

)1−a
e−z

�(1− a)

∞∫
0

ea(t−logt)

1− αt
dt (5)

and

R ≡



1 if Arg(z)/Arg(a) > 1,

1/2 if Arg(z)/Arg(a) = 1,

0 if Arg(z)/Arg(a) < 1.

The unique saddle point of the exponentt − logt is located att = 1. This is the unique
asymptotically relevant point and then, the asymptotic approximation of�0(a, z) requires
an expansion of the non-exponential part of the integrand in (5) at the pointt = 1 [5]:

1

1− αt
= 1

1− α

n−1∑
k=0

(
1− t

α − 1

)k

αk + 1

1− αt

(
1− t

α − 1

)n

αn. (6)

Substituting (6) in (5) and interchanging summation and integration we obtain

�0(a, z) = −zae−z

[
n−1∑
k=0

Φk(a)

(a − z)k+1
+ Rn(a, z)

]
, (7)

where the functionsΦk(a) are given by

Φk(a) ≡ (−a)k+1−a

�(1− a)

∞∫
0

ea(t−logt)(t − 1)k dt =
k∑

j=0

(
k

j

)
(1− a)j

aj−k
. (8)

The first few functionsΦk(a) are detailed in Table 1. The real part of the exponent in
above integrand has an absolute maximum att = 1. Applying the Laplace method an
using [1, Eq. 6.1.37] we deduce thatΦk(a) = O(ak/2) asa → ∞. Therefore, the sequenc
(a − z)−k−1Φk(a) in (7) is an asymptotic sequence for largea andz if z − a = O(a1/2+ε)

for anyε > 0: (a − z)−k−1Φk(a) = O(ak/2(a − z)−k−1).

Table 1
First few functionsΦk(a) defined in (8) and used in (7)

k Φk(a) k Φk(a)

0 1 4 24− 26a + 3a2

1 1 5 120− 154a + 35a2

2 2− a 6 720− 1044a + 340a2 − 15a3

3 6− 5a 7 5040− 8028a + 3304a2 − 315a3
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Table 2
Numerical experiments about the relative errors in the approximation of�(a, z) using (7) for reala andz with a

away fromz and different values ofn

a z n = 1 n = 3 n = 5 n = 7 n = 9

−50 20 0.004 0.0004 0.00003 4.0e−6 5.4e−7
−100 50 0.002 0.00008 3.3e−6 1.5e−7 8.3e−9
−200 100 0.001 0.00002 4.1e−7 9.2e−9 2.4e−10
−500 200 0.0004 4.1e−6 3.6e−8 3.6e−10 4.0e−12
−1000 500 0.0002 8.8e−7 3.2e−9 1.4e−11 1.8e−12

Table 3
Numerical experiments about the relative errors in the approximation of�(a, z) using (7) for complexa andz

with a away fromz and different values ofn

z a n = 1 n = 3 n = 5 n = 7 n = 9

10− 30i −5+ 5i 0.02 0.0006 0.00002 2.0e−6 2.1e−7
50− 30i −20+ 5i 0.009 0.0001 5.1e−6 1.9e−7 1.0e−8
100− 30i −50+ 5i 0.004 0.00005 9.2e−7 1.9e−8 5.5e−10
200− 30i −100+ 5i 0.002 0.00001 1.2e−7 1.3e−9 1.7e−11
500− 30i −200+ 5i 0.001 2.4e−6 7.3e−9 2.9e−11 1.3e−13

The remainder term in (7) is given by

Rn(a, z) ≡ (−a)n+1−a

(a − z)n�(1− a)

∞∫
0

ea(t−logt)

at − z
(t − 1)n dt. (9)

The real part of the exponent has an absolute maximum att = 1. Applying Laplace’s
method to this integral we deduce thatRn(a, z) = O(an/2(a − z)−n−1) asa → ∞. There-
fore, (7) is an asymptotic expansion for largea andz provided thata − z = O(a1/2+ε),
ε > 0.

Apart from the explicit formula (8), integrating by parts in (8) we find the recurrenc

Φk(a) = kΦk−1(a) + a(1− k)Φk−2(a), k = 2,3,4, . . . .

From this recurrence andΦ0(a) = Φ1(a) = 1, it may be shown by induction tha
Φk(a) = O(a�k/2�) as a → ∞. Therefore, the asymptotic properties of the seque
(a − z)−k−1Φk(a) are better than those deduced by using the Laplace method:

(a − z)−k−1Φk(a) = O
(
a�k/2�(a − z)−k−1).
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3. �(a) > −1, �(a) > �(z) and away from the transition point

We consider in this section the functionγ (a + 1, z). From (2) we have

γ (a + 1, z) =
z∫

0

ua e−u du, �a > −1. (10)

After the change of variableu = z(1− t) and defining againα ≡ a/z we have,

γ (a + 1, z) = za+1e−z

1∫
0

ezf (t) dt, f (t) ≡ t + α log(1− t). (11)

The real part of the exponent in the integrand of (11) reads

�[
zf (t)

] = t�z + �a log(1− t). (12)

It has a relative maximum at the pointt = 1 − �a/�z. Therefore, for�a > �z > 0, the
maximum value of the exponent in the integrand of (11) is attained att = 0. This indicates
that the main contribution of the integrand to the integral (11) comes from the pointt = 0
and the integral may be approximated replacingf (t) in (11) by its Taylor polynomial a
t = 0 [5]. We split the functionf (t) in two terms:

f (t) = f1(t) + f2(t) (13)

wheref1(t) ≡ (1− α) t is the Taylor polynomial of degree 1 off (t) at t = 0 and

f2(t) ≡ f (t) − (1− α)t = α
[
t + log(1− t)

]
. (14)

With this splitting, the integral in (11) reads

γ (a + 1, z) = za+1e−z

1∫
0

e(z−a)t ezf2(t) dt. (15)

We expand

ezf2(t) = eat (1− t)a =
∞∑

k=0

ck(a)tk, |t | < 1, (16)

with

ck(a) ≡
k∑ (−a)j ak−j

. (17)

j=0

j ! (k − j)!



Ch. Ferreira et al. / Advances in Applied Mathematics 34 (2005) 467–485 473

ion

ation
Table 4
First few coefficientsck(a) defined in (17) and used in (20)

k ck(a) k ck(a)

0 1 4 (−2a + a2)/8
1 0 5 (−6a + 5a2)/30
2 −a/2 6 (−24a + 26a2 − 3a3)/144
3 −a/3 7 (−120a + 154a2 − 35a3)/840

The first few coefficientsck(a) are detailed in Table 4. From the differential equat
(1− t)f ′ + atf = 0, satisfied byezf2(t), we derive:

ck+1(a) = 1

k + 1

[
kck(a) − ack−1(a)

]
. (18)

Fromf2(0) = f ′
2(0) = 0 we see that [4, Lemma 2.1]

c0 = 1, c1 = 0, ck(a) = O
(
a�k/2�), |a| → ∞. (19)

The expansion in (16) converges uniformly with respect tot on [0,1] (when
�a > 0). Hence we can substitute (16) in (15) to obtain, after interchanging summ
and integration,

γ (a + 1, z) = e−zza+1
∞∑

k=0

ck(a)Φk(z − a), (20)

where the coefficientsck(a) are given in (17) or (18)–(19) and

Φk(z − a) ≡
1∫

0

e(z−a)t tk dt = γ (k + 1, a − z)

(a − z)k+1
. (21)

Taking into account that

Φk(z − a) = dk

d(z − a)k

1∫
0

e(z−a)t dt = dk

d(z − a)k

[
e(z−a) − 1

z − a

]

= k!
(a − z)k+1

− ez−a
k∑

j=0

(
k

j

)
j !

(a − z)j+1

(22)

and thatez−a is exponentially small for�z < �a, we see that

( )

Φk(z − a) = O (z − a)−k−1 , |z − a| → ∞. (23)
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Table 5
First few functionsΦk(z − a) defined in (22) and used in (20)

k Φk(z − a) k Φk(z − a)

0
1

a − z
− ez−a

a − z
2

2

(a − z)3
− ez−a

a − z

[
1+ 2

a − z
+ 2

(a − z)2

]

1
1

(a − z)2
− ez−a

a − z

[
1+ 1

a − z

]
3

6

(a − z)4
− ez−a

a − z

[
1+ 3

a − z
+ 6

(a − z)2
+ 6

(a − z)3

]

Table 6
Numerical experiments about the relative errors in the approximation ofγ (a, z) using (20) for reala andz with a

away fromz and different values ofn

a z n = 1 n = 3 n = 6 n = 9 n = 12

50 10 0.03 0.001 0.0004 0.00003 3.2e−6
100 40 0.02 0.001 0.0003 9.4e−6 6.3e−8
200 80 0.01 0.0003 0.00003 2.9e−7 1.1e−6
500 180 0.004 0.00004 1.7e−6 1.8e−9 1.3e−10
1000 500 0.003 0.00003 9.5e−7 3.0e−10 4.2e−11

Table 7
Numerical experiments about the relative errors in the approximation ofγ (a, z) using (20) for complexa andz

with a away fromz and different values ofn

a z n = 1 n = 3 n = 6 n = 9 n = 12

50+ 20i 20− 5i 0.03 0.002 0.0006 0.00005 8.5e−6
100+ 20i 50− 5i 0.03 0.002 0.0005 0.00001 9.3e−6
200+ 20i 80− 5i 0.01 0.0003 0.00003 2.5e−7 5.0e−8
500+ 20i 200− 5i 0.005 0.00005 2.5e−6 2.9e−9 2.7e−10
1000+ 20i 500− 5i 0.003 0.00003 9.4e−7 3.3e−10 4.0e−11

On the other hand, integrating by parts in (21) we find the recurrence:

Φk(z − a) = 1

z − a

[
ez−a − kΦk−1(z − a)

]
, k = 1,2,3, . . . .

The first few functionsΦk(a) are detailed in Table 5.
The expansion (20) is convergent. But from (19) and (23) we see that it is also a

totic for largea − z provided thata − z = O(a1/2+ε), ε > 0 and�z < �a.

3.1. An alternative expansion

We consider in this subsection the formula [11, p. 279, Eq. (11.9)]

γ (a + 1, z) = za+1e−z
∞∑ zk

(24)

k=0

(a + 1)k+1
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as an alternative expansion to expansion (20). As well as (20), this series is conv
It is also asymptotic for largea andz providedz = O(a1−ε), ε > 0. We compare below
convergence and asymptotic properties of (20) and (24).

We consider largek (in particulark 
 �(a)). From (17) we write

ck(a) =
j0∑

j=0

(−a)j

j !
ak−j

(k − j)! +
k/2∑

j=j0+1

(−a)j

j !
ak−j

(k − j)! +
k∑

j=k/2+1

(−a)j

j !
ak−j

(k − j)! ,

with j0 ≡ ��(a)� + 2. For largek, the first sum is clearly, at most, of the ord
O((1 + ak)/(k − j0)!). Using (−a)j = �(j − a)/�(−a), |�(j − a)| � |�(j − �(a))|
and�(j − �(a)) < j ! for j > j0, we see that the second sum above is, at most, o
orderO((1+ ak)/(k/2− 1)!). Finally, for the last sum we write:

k∑
j= k

2+1

|(−a)j |
j !

|a|k−j

(k − j)! � �(k/2+ 1− �(a))

|�(−a)|�(k/2+ 2)

k∑
j= k

2+1

|a|k−j

(k − j)! � e|a| �(k/2+ 1− �(a))

|�(−a)|�(k/2+ 2)
.

Using the Stirling approximation of the gamma function, we see that this last sum
the orderO(k−1−�(a)) for largek. Therefore, using these estimations, we haveck(a) =
O(k−1−�(a)) ask → ∞. From (21) we see that|Φk(z − a)| � (k + 1)−1. Therefore, ex-
pansion (20) has the following rate of convergence:ck(a)Φk(a) ∼ k−2−�(a) ask → ∞,
whereas expansion (24) has a stronger factorial rate of convergence.

On the other hand, the asymptotic properties of (20) are better than those o
the conditionz = O(a1−ε), ε > 0 is more stringent than the conditiona − z = O(a1/2+ε),
ε > 0. In particular, the asymptotic character of (24) for largea andz requires|z| < |a|,
whereas expansion (20) is asymptotic for largea andz when |z| > |a| provided�(a) >

�(z) anda away fromz.
Tables 8 and 9 illustrate the different rate of convergence and asymptotic accur

expansions (20) and (24).

Table 8
Numerical experiments comparing the rate of convergence of expansions (20)
and (24) when approximatingezz−a−1γ (a + 1, z) for fixed a = 20 andz = 10

n approximation (20) approximation (24)

5 0.0935918 0.0847679
10 0.0909609 0.0851108
20 0.0866497 0.0851121
30 0.0845521 0.0851121
40 0.0850625 0.0851121
∞ 0.0851121 0.0851121

Second and third columns represent the approximations supplied by (20)
and (24), respectively, for several number of summandsn. The last row (n = ∞)

represents the exact value ofezz−a−1γ (a + 1, z) up to 7 digits.
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Table 9
Numerical experiments comparing the asymptotic accuracy of expansions (20) and (24) when approx
ezz−a−1γ (a + 1, z) for several values ofa andz and fixed number of summandsn = 3

z a exact value approximation (20) approximation (2

10 100 0.01097590 0.01097390 0.01108720
10 1000 0.00100907 0.00100907 0.00101009
100 200 0.00980752 0.00980000 0.00871903
100 1000 0.00110974 0.00110974 0.00110987
1000 2000 0.00099801 0.00099800 0.00087469

The third column represent the exact value ofezz−a−1γ (a + 1, z) up to 8 digits. Fourth and fifth column
represent the approximations supplied by (20) and (24), respectively.

4. �(a) > −1, �(a) < �(z) and away from the transition point

We consider in this section the function�(a + 1, z):

�(a + 1, z) =
∞∫
z

uae−u du,
∣∣Arg(z)

∣∣ < π. (25)

After the change of variableu = z(1+ t) and using the Cauchy residue theorem we ha

�(a + 1, z) = za+1 e−z

∞eiθ∫
0

e−zf (t) dt, f (t) ≡ t − α log(1+ t), (26)

for any |θ | < π/2 with |θ + Arg(z)| < π/2.
The asymptotic features of (26) for�a < �z are those of the integral (15) for�a > �z.

Then, repeating the same arguments as in the previous section we obtain the forma
sion

�(a + 1, z) ∼ e−zza+1
∞∑

k=0

ck(a)

(z − a)k+1
, (27)

with

ck(a) ≡ (−1)k
k∑

j=0

(
k

j

)
(−a)j

j !
ak−j

(k − j)! (28)

and

ck+1(a) = −k
[
ck(a) + a ck−1(a)

]
, k = 1,2,3, . . . . (29)

Again, ( )

c0 = 1, c1 = 0, ck(a) = O a�k/2� , |a| → ∞. (30)
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Table 10
First few coefficientsck(a) defined in (28) and used in (27)

k ck(a) k ck(a)

0 1 4 −3(2a − a2)

1 0 5 4(6a − 5a2)

2 −a 6 −5(24a − 26a2 + 3a3)

3 2a 7 6(120a − 154a2 + 35a3)

The first few coefficientsck(a) are detailed in Table 10.
Expansion (27) is not convergent because we cannot apply the arguments of u

convergence used in Section 3. Nevertheless it is asymptotic for largea − z provided that
a − z = O(a1/2+ε) for any ε > 0. We do not offer any proof of this here because exp
sion (27) is just the expansion previously derived by Tricomi [12].

5. The transition point

The expansions given in the three preceding sections are not valid near the
tion point a = z. We consider here another variation of the integral representation (
�(a + 1, z) in order to derive an asymptotic expansion valid at the transition point:

�(a + 1, z) =
∫
C1

tae−t dt. (31)

In this formula,C1 is a simple path joining the pointt = z with the pointt = ∞eiθ with
−π/2< θ < π/2 and which does not cross the negative real axis (see Fig. 1(left)).

After the change of variablet = a(1+ u), (31) is transformed in

�(a + 1, z) = e−aaa+1
∫
C2

e−a(u−log(1+u)) du, (32)

whereC2 is a simple path joining the pointu = z/a − 1 with the pointt = ∞ei(θ−Arg(a))

and which does not cross the line[−1,−∞/a) (see Fig. 1(right)).
The functionf (u) ≡ u − log(1 + u) in the exponent in (32) has a simple saddle po

at u = 0, wheref (0) = 0. The main contribution of the integrand to the integral (
comes from the pointu = 0 and the integral may be approximated replacingf (u) in (32)
by its Taylor polynomial atu = 0 [5]. We split the functionf (u) in two terms:f (u) =
1
2u2+f3(u), where1

2u2 is the Taylor polynomial of degree 2 off (u) atu = 0 andf3(u) ≡
u − log(1+ u) − 1

2u2. With this splitting, the integral in (32) reads

�(a + 1, z) = e−aaa+1
∫

e− a
2u2−af3(u) du. (33)
C2
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ion
Fig. 1. Integration pathC1 in formula (31) (left). Integration pathC2 in formula (32) (right).

Table 11
First few coefficientsck(a) defined in (35) and used in (36)

k ck(a) k ck(a)

0 1 4 −a/4
1 0 5 a/5
2 0 6 (−3a + a2)/18
3 a/3 7 (12a − 7a2)/84

We expand

e−af3(u) = eau2/2−au(1+ u)a =
∞∑

k=0

ck(a)uk, |u| < 1, (34)

with

ck(a) = (−1)k
k∑

j=0

�j/2�∑
l=0

(−a)j−2l

(j − 2l)!l!
ak−j

(k − j)!
(

a

2

)l

. (35)

The first few coefficientsck(a) are detailed in Table 11. From the differential equat
(1+ u)f ′ − au2f = 0, satisfied bye−af3(u), we derive:

ck+1(a) = 1 [
ack−2(a) − kck(a)

]
.

k + 1
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From f3(0) = f ′
3(0) = f ′′

3 (0) = 0 we see that [4, Lemma 2.1]c0(a) = 1 andc1(a) =
c2(a) = 0. Using also the above recurrence we see thatck(a) = O(a�k/3�) as a → ∞.
Replacing the expansion (34) in (33) we obtain

�(a + 1, z) = e−aaa+1

[
n−1∑
k=0

ck(a)Φk(a, z) + Rn(a, z)

]
, (36)

with

Φk(a, z) ≡
∫
C2

uke− a
2u2

du (37)

and

Rn(a, z) ≡
∫
C2

e− a
2u2

[
e−af3(u) −

n−1∑
k=0

ck(a)uk

]
du. (38)

The convergence of integrals (37) and (38) requires the additional hypothesis 2θ − π/2 <

Arg(a) < 2θ + π/2. After a straightforward computation we find

Φ0(a, z) =
√

π

2a
erfc

(
z − a√

2a

)
, Φ1(a, z) = e−(z−a)2/(2a)

a
(39)

and, fork = 1,2,3, . . . ,

Φ2k(a, z) = (−2)k
√

π

2

dk

dak

[
1√
a

erfc

(
b

√
a

2

)]∣∣∣∣
b=(z−a)/a

(40)

and

Φ2k+1(a, z) = (−2)k
dk

dak

[
e−ab2/2

a

]∣∣∣∣
b=(z−a)/a

. (41)

On the other hand, integrating by parts in (37) we find that, fork = 2,3,4, . . . ,

Φk(a, z) = 1

a

[
(k − 1)Φk−2(a, z) +

(
z − a

a

)k−1

e−(z−a)2/(2a)

]
. (42)

From (40) and (41) or from (39) and (42) we see that

−(z−a)2/(2a)

{
O(a−(k+1)/2) if |z − a|2 � |a|,
Φk(a, z) = e
O(a−k(z − a)k−1) if |z − a|2 � |a|. (43)
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Table 12
Asymptotic order of the first 9 terms of the sequenceck(a)Φk(a, z) in (36) (the factore−(z−a)2/(2a) is omitted)

k 0 1 2 3 4 5 6 7 8

|z − a|2 � |a| a−1/2 0 0 a−1 a−3/2 a−2 a−3/2 a−2 a−5/2

|z − a|2 � |a| a−1/2 0 0 (z − a)−2 (z − a)−3 (z − a)−4 (z − a)−3 (z − a)−4 (z − a)−5

Therefore, using thatck(a) = O(a�k/3�) asa → ∞, we have

ck(a)Φk(a, z) = e−(z−a)2/(2a)

{
O(a�k/3�−(k+1)/2) if |z − a|2 � |a|,
O(a�k/3�−k(z − a)k−1) if |z − a|2 � |a|. (44)

Then, the sequenceck(a)Φk(a, z) is an asymptotic sequence ifz− a = o(a2/3) asa → ∞.
Finally, we show that the remainderRn(a, z) in (36) (defined in (38)) is of the sam

order than the first neglected term in the expansion (36). For this purpose we write

e−af3(u) −
n−1∑
k=0

ck(a)uk =
∞∑

k=n

ck(a)uk, |u| < 1. (45)

We deform and split the integration path in the right-hand side of (38):C2 → C3 ∪ C4 ∪ C5,
whereC3 is a straight line joining the pointsu = z/a − 1 andu = 0; C4 is a straight line
joining the pointsu = 0 andu = s, s := ei(θ−Arg(a)); andC5 is a straight line joining the
pointsu = s andu = s · ∞ (see Fig. 2):

Rn(a, z) = R(1)
n (a, z) + R(2)

n (a, z), (46)
Fig. 2. Integration pathsC3, C4 andC5 in formulas (47)–(48).
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with
tion

y

with

R(1)
n (a, z) ≡

∫
C3∪C4

e− a
2u2

[
e−af3(u) −

n−1∑
k=0

ck(a)uk

]
du (47)

and

R(2)
n (a, z) ≡

∫
C5

e− a
2u2

[
e−af3(u) −

n−1∑
k=0

ck(a)uk

]
du. (48)

If |z − a| < |a|, then the series in the right-hand side of (45) converges uniformly
respect tou onC3∪C4. Introducing (45) in (47) and interchanging the orders of summa
and integration we obtain

R(1)
n (a, z) =

∞∑
k=n

ck(a)

s∫
z/a−1

uke−au2/2 du

=
∞∑

k=�(n+1)/2�
c2k(a)(−2)k

√
π

2

dk

dak

[
1

a

(
erfc

(
b

√
a

2

)
− erfc

(
s

√
a

2

))]
b=(z−a)/a

+
∞∑

k=�n/2�
c2k+1(a)(−2)k

dk

dak

[
e−ab2/2

a
− e−as2/2

a

]
b=(z−a)/a

. (49)

For largea, this expression is of the order of the first term of the series,O(cn(a)Φn(a, z)),
provided that�(as2) � �((z − a)2/a).

On the other hand, after the change of variableu → r in the integral (48) defined b
u = sr , r ∈ [1,∞), we have

∣∣R(2)
n (a, z)

∣∣ �
∞∫

1

[
e−|a|g1(r,Arg(a),θ) + e−|a|g2(r,Arg(a),θ)

∣∣∣∣∣
n−1∑
k=0

ck(a)rksk

∣∣∣∣∣
]

dr, (50)

with

g1
(
r,Arg(a), θ

) ≡ r cosθ − cos
(
Arg(a)

)
log

√
1+ r2 + 2r cos(θ − Arg(a))

+ sin
(
Arg(a)

)
arctan

(
r sin(θ − Arg(a))

1+ r cos(θ − Arg(a))

)
, (51)

( ) 1 ( )

g2 r,Arg(a), θ ≡

2
r2 cos 2θ − Arg(a) . (52)
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2
2
2

The derivative of the functiong1(r,Arg(a), θ) with respect tor is

dg1(r,Arg(a), θ)

dr
= cos(2θ − Arg(a)) + r cosθ

1+ r2 + 2r cos(θ − Arg(a))
r. (53)

This is non-negative thanks to the hypotheses−π/2< θ < π/2 and 2θ − π/2< Arg(a) <

2θ + π/2 and therefore, the functiong1(r,Arg(a), θ) is an increasing function ofr . More-
over, within this hypotheses, the functiong2(r,Arg(a), θ) is also an increasing functio
of r . Therefore, both exponentials in the right-hand side of (50) attain their maxi
inside the integration interval at the pointr = 1. Then,

R(2)
n (a, z) = O

(
e−|a|g1(1,Arg(a),θ) + e−|a|g2(1,Arg(a),θ)

) = O
(
e−as + e−as2)

. (54)

For largea, this expression is of the orderO(cn(a)Φn(a, z)), provided that�(as) �
�((z − a)2/a). Then, from (46), (47), (48), (49) and (54) we have thatRn(a, z) =
O(cn(a)Φn(a, z)) asa, z → ∞ with a − z = o(a2/3) provided that

|z − a|2 cos
(
2Arg(z − a) − Arg(a)

)
� |a|2Min

{
cosθ,cos

(
2θ − Arg(a)

)}
.

This inequality holds for large enougha thanks to the hypotheses|θ | < π/2, |2θ −
Arg(a)| < π/2 andz − a = o(a2/3). The optimum value forθ is attained atθ = Arg(a)/3.

Tables 13 and 14 show some numerical experiments about the approximation su
by (36).

Table 13
Relative errors in the approximation ofγ (a, z) supplied by (36) fora = 100,z on a semicircle of radius 2 arounda
and different values ofn

a z n = 1 n = 4 n = 10 n = 16

100 102 0.06 0.001 0.0006 0.0000
100 100+ 2eiπ/4 0.06 0.0009 0.0005 0.0000
100 100+ 2eiπ/2 0.05 0.0008 0.0005 0.0000
100 100+ 2ei3π/4 0.04 0.0007 0.0004 0.0000
100 98 0.04 0.0007 0.0004 0.0000

Table 14
Relative errors in the approximation ofγ (a, z) supplied by (36) for different values ofa, z neara and different
values ofn

a z n = 1 n = 4 n= 10 n = 16

200− 100i 180− 105i 0.01 0.0003 0.00006 4.4e−6
500+ 5i 450+ 6i 0.003 0.00007 0.00001 5.0e−7
1000− 30i 980− 25i 0.01 0.00005 4.6e−6 9.8e−8
4+ 5000i 10+ 4900i 0.005 0.00003 1.4e−7 7.0e−10
10000 9900+ i 0.002 3.5e−6 4.4e−8 1.0e−10
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6. Concluding remarks

The main results of the paper are the following:

(A) For �a < 0, |Arg(z)| < π and largea andz with a − z = O(a1/2+ε), ε > 0,

�(a, z) ∼ − 2πiR

�(1− a)
eiπa sgn(Arg(a))sgn

(
Arg(a)

) − zae−z

∞∑
k=0

Φk(a)

(a − z)k+1
,

with

Φ0(a) = 1, Φ1(a) = 1,

Φk(a) = k Φk−1(a) + a(1− k)Φk−2(a), k = 2,3,4, . . .

and

R ≡



1 if Arg(z)/Arg(a) > 1,

1/2 if Arg(z)/Arg(a) = 1,

0 if Arg(z)/Arg(a) < 1.

(B) For�z > �a > −1, |Arg(z)| < π and largea andz with a − z = O(a1/2+ε), ε > 0,

�(a + 1, z) ∼ e−zza+1
∞∑

k=0

ck(a)

(z − a)k+1
,

with

c0 = 1, c1 = 0, ck+1(a) = −k
[
ck(a) + ack−1(a)

]
, k = 1,2,3, . . . .

(C) For�a > −1, |Arg(z)| < π and�z < �a,

γ (a + 1, z) = e−zza+1
∞∑

k=0

ck(a)Φk(z − a),

with

c0 = 1, c1 = 0, ck+1(a) = 1

k + 1

[
kck(a) − ack−1(a)

]
, k = 1,2,3, . . .

and

Φ0(z − a) = 1− ez−a

a − z
,

1 [
z−a

]

Φk(z − a) =

z − a
e − kΦk−1(z − a) , k = 1,2,3, . . . .
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Fig. 3. Regions of validity of the above expansions depending on the value ofa and the relative value ofa andz.
Asymptotically, the radiusr of the region D must be of an order betweenO(a1/2) andO(a2/3). An intermediate
value isO(a5/12).

The above expansion is an asymptotic expansion for largea andz provided thata − z =
O(a1/2+ε), ε > 0.

(D) For |Arg(z)| < π and largea andz with a − z = o(a2/3),

�(a + 1, z) ∼ e−aaa+1
∞∑

k=0

ck(a)Φk(a, z),

with

c0(a) = 1, c1(a) = c2(a) = 0,

Φ0(a, z) =
√

π

2a
erfc

(
z − a√

2a

)
, Φ1(a, z) = e−(z−a)2/(2a)

a

and, fork = 2,3,4, . . . ,

ck+1(a) = 1

k + 1

[
ack−2(a) − kck(a)

]
, k = 2,3,4, . . . ,

Φk(a, z) = 1

a

[
(k − 1)Φk−2(a, z) +

(
z − a

a

)k−1

e−(z−a)2/(2a)

]
.

As it was stated in the introduction, the main benefit of the above expansions is
simplicity. As far as we know, expansions (A), (C) and (D) are new, whereas (B)
previously obtained by Tricomi [12]. The asymptotic sequences in the expansion
and (C) are different from those in [2,6,12]. The coefficients are simpler and th
pansions are valid in different regions for(a, z). Moreover, expansion (C) is converge
The expansion (D) (valid fora nearz), as well as Paris’ expansion, is given in terms

complementary error functions, but the coefficients are simpler than in Paris’ expansion.
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Moreover, it is uniformly valid in�(a − z), whereas Paris’ expansion distinguishes
tween�(a − z) � 0 and�(a − z) � 0 [8, Eqs. (2.15), (3.4)]. On the other hand, fo
given precision, Paris’ expansion requires less terms than expansion (D).

If the asymptotic sequenceΦk(z−a) in (C) is replaced by its asymptotic approximati
for largea − z (with �(a − z) > 0) given by the first term on the right-hand side of (2
our expansion reduces to Tricomi’s expansion forγ (a, z) [12], which is not convergent. In
fact, the exponentially small terms inΦk(z − a) are necessary for the convergence of (
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