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Abstract

We consider the incomplete gamma functidh@, z) andy (a, z) for large values of their vari-
ablesa and z. We derive four complementary asymptotic expansions which approximate these
functions for largga| and|z| with |Arg(a)| < 7 and|Arg(z)| < . Three of these expansions are
given in terms of decreasing powerswof z and are not valid near the transition paint z. A fourth
expansion is given in terms of decreasing powers ahd error functions and is valid farnearz.

These expansions have a simpler structure than other expansions previously given in the literature.
00 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Incomplete gamma functions are defined by the integrals
(e.¢]
F(a,z)E/e_’t“_ldt, z€eC\R7, aeC, @)

Z
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and
Z
J/(a,Z)E/ef’t“*ldt, zeC\R™, %a > 0. ()
0

In both definitions, the integration paths do not cross the negative real axis. These func-
tions play an important role in applied mathematics, physics, statistics and other scientific
disciplines.

In this paper we are concerned with their approximation for large valuesnfiz. The
asymptotic expansion df(a, z) andy (a, z) when eithew or z is large is well known and
quite straightforward (see for example [11, Section 11.2.1]). When bathdz are large,
the situation is different. We can find several uniform asymptotic expansions in the litera-
ture that are more complicated than the non-uniform expansions. That complexity is more
evident at the transition poiat= z, where the asymptotic structure B{a, z) andy (a, z)
suffers an abrupt change. Several authors have obtained different asymptotic expansions of
these functions for large andz valid in different regions of Ar¢u) and of Argz). Some
of them are not valid near the transition point [2,6,12]. Other expansions are valid at that
point [7,9,10,12], [11, Section 11.2.4], and involve a complementary error function which
takes account of that abrupt change in the asymptotic behaviour. Many of those expan-
sions are based on standard uniform asymptotic methods for integrals and are complicated
owing to the difficult changes of variables involved in those methods. But recently, Paris
has suggested a different uniform asymptotic treatmenit far z) andy (a, z) which sim-
plifies the analysis [8]. His method does not require any change of variable, but just an
appropriate factorization of the integrand and an expansion of one of the factors. Paris has
obtained in this way simpler uniform asymptotic expansionB(@f, z) andy (a, z) valid at
the transition point: = z which involve a complementary error function. Moreover, Paris
explains how the expansions given in [2,6,12] (not valid &t z) can be derived from his
expansions.

On the other hand, Temme and Lépez have proposed in specific examples (Bernoulli,
Euler, Charlier, Laguerre and Jacobi polynomials) a modification of the saddle point
method which simplifies the analysis [3,5]. This simplification consists of just expand-
ing the non-exponential part of the integrand at the saddle point(s) of the exponential part
avoiding any change of variable. In this way, simpler uniform asymptotic expansions than
the classical ones are obtained for those polynomials.

In this paper we combine both simplifier ideas (the one of Paris and the one of Temme
and Lopez) in order to derive quite simple asymptotic expansion¥@fz) andy (a, z)
for largea andz. Our strategy consists of: (i) a factorization of the integrandl'{a, z)
or y (a, z) in an exponential factor times another factor and (ii) an expansion of this second
factor at the asymptotically relevant point of the exponential factor (saddle point or end
point). The main benefit of this procedure is the derivation of easy asymptotic expansions
with easily computable coefficients. We require three or four different expansions to cover
the region(a, z) € C x (C\ R™) depending on the value af— z. Because of the relation
I'(a,z) +y(a,z) =T(a) valid fora € C\ Z~, we will only derive expansions for either
I'(a, z) or y(a, z) at every one of the four different regions mentioned above.
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In the following section we considéi(a, z) and derive an expansion valid in the region
Ja < 0 and away from the transition poiat= z. In Section 3 we derive an expansion
valid in the regionia > —1, R(a) > R(z) and away from the transition poiat= z. In
Section 4 we derive an expansion valid in the region> —1, % (a) < N(z) and away from
the transition poink = z. In Section 5 we obtain an asymptotic expansion valid around the
transition pointz = z. In Section 6 we present some conclusions and a few comments. In
what follows Argz) denotes the principal argumentfArg(z) € (—x, 1.

2. R(a) < 0and away from thetransition point

We consider in this section the functidi{a, z) and an integral representation different
from (1) [11, p. 280, Eq. (11.13)]:

fztt a

r R 0, Mz>0. 3
(a,2) = F(l a)/ 11 dr, a<0, Rz > 3)

After the change of variable=u/z, it reads

r , N 0, fz>0.
(a,2)= F(l—a)/ — du a< 7>

The integrand is an analytic function ofin the sector Argu) € (0, Arg(z)). In that sector
9u > 0. Then, using the Cauchy’s Residue Theorem we have

a,—z Iy —u,,—a
Ma,z) = —— L,
'd—a u—+z
0

<m/2.

The right-hand side above is an analytic function @f the sectotArg(z)| < 7 and there-
fore defines the analytic continuation Bfa, z) to that sector. Thus, in what follows, we
assumeArg(z)| < .

We perform the change of variahle= —ar in the above integral:

r 1-a — att—a _a
@)= <z> ey / a *=7

The integrand is an analytic function ofn the sector Arg¢) € (0, Arg(—1/a)) and has
a simple pole at = «~1. This pole is in that sector if Arg)/Arg(a) > 1. In that sector
N(at) < 0. Then, using the Cauchy’s Residue Theorem we have

2niR .
F(a.2)=To@.2) = 5o (f - 5 ¢S IMA @ sgr(Arg(a)), @)
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where

a 1—a e~? Ooea(t—logt)
I'o(a,z) = —-— dr 5

o(@.2) ( z) rdi—a)) 1-w ©)
0

and

1 if Arg(z)/Arg(a) > 1,
R=1{1/2 ifArg(z)/Arg(a) =1,
0 if Arg(z)/Arg(a) < 1.

The unique saddle point of the exponent log: is located at = 1. This is the unique
asymptotically relevant point and then, the asymptotic approximatidty@f, z) requires
an expansion of the non-exponential part of the integrand in (5) at thempsift[5]:

1 1 n—1

1-1\* , 1 (1-r)"
= " 6
1—ot 1—az<a—l)a +1—at<a—1>a ©

k=0

Substituting (6) in (5) and interchanging summation and integration we obtain

' B
Fola,z) =—z%"* |:k22(:) m + R, (a, z)i|, )

where the function®, (a) are given by

o Nktl-a F k —0.
®p(a) = (—a) ea([—logt) (t — 1)k dr = Z <k> (1ajj()] )

(8)
rad—a J par

The first few functionsb, (a) are detailed in Table 1. The real part of the exponent in the
above integrand has an absolute maximum atl. Applying the Laplace method and
using [1, Eq. 6.1.37] we deduce that(a) = O(a*/2) asa — co. Therefore, the sequence
(a —2) % 1@y (a) in (7) is an asymptotic sequence for laegandz if z —a = O(al/?1¢)
foranye > 0: (a — 2) 1o (a) = O@@2(a — )% 1),

Table 1

First few functions®y (a) defined in (8) and used in (7)

k D (a) k D (a)

0 1 4 24— 26q + 342

1 1 5 120— 1547 + 3542

2 2—a 6 720— 1044 + 3402 — 1543

3 6—5a 7 5040— 8028& + 33042 — 3153
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Table 2

Numerical experiments about the relative errors in the approximatioriafz) using (7) for reak andz with a
away fromz and different values of

a z n=1 n=3 n=>5 n=7 n=9
-50 20 Q004 Q0004 000003 40e—-6 5.4e-7
—100 50 0002 Q00008 33e-6 15e-7 8.3e-9
—200 100 0001 Q00002 41e-7 9.2e-9 24e-10
—500 200 00004 41e-6 3.6e-8 36e-10 40e-12
—1000 500 00002 88e-7 32e-9 l4e-11 18e-12
Table 3

Numerical experiments about the relative errors in the approximatidh@fz) using (7) for complex: andz
with a away fromz and different values of

z a n=1 n=3 n=>5 n="7 n=9
10— 30i —5+5i 0.02 0.0006 0.00002 2.66 2.1le-7
50— 30 —20+ 5 0.009 0.0001 5.1e6 1.9e-7 1.0e-8
100— 30i —50+ 5 0.004 0.00005 9.2e7 1.9e-8 5.5e-10
200— 30 —100+ 5i 0.002 0.00001 1.2e7 1.3e-9 1.7e-11
500— 30i —200+ 5i 0.001 2.4e-6 7.3e-9 2.9e-11 1.3e-13

The remainder term in (7) is given by

(_a)n+l—a Ooea(t—logt)

R,(a,2) = @ oTa— e (r—1"dr. (9)
0

The real part of the exponent has an absolute maximum=atl.. Applying Laplace’s
method to this integral we deduce tit(a, z) = O(a"/?(a — z) ™" 1) asa — oco. There-
fore, (7) is an asymptotic expansion for largendz provided thatz — z = O(aY/?t¢),

e>0.

Apart from the explicit formula (8), integrating by parts in (8) we find the recurrence:
Or(a) =kPr_1(a) +a(l—=k)Pr_2(a), k=2,3,4,....

From this recurrence anég(a) = ®1(a) = 1, it may be shown by induction that
& (a) = O(a*/2ly asa — oo. Therefore, the asymptotic properties of the sequence
(a — 2) % ~1d;(a) are better than those deduced by using the Laplace method:

(a - Z)_k_l¢k(a) = O(a I-k/ZJ (a _ Z)_k_l).
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3. R(a) > -1, R(a) > R(z) and away from thetransition point

We consider in this section the functipria + 1, z). From (2) we have

Z
ya+17z) =fu“ e "du, Na>-1 (20)
0

After the change of variable = z(1 — ¢) and defining agaier = a/z we have,

1
y(a+1,z) =z te? / Ode, ft)y=1+alogd—1). (11)
0

The real part of the exponent in the integrand of (11) reads
R[zf ()] = tRz + RalogL —1). (12)

It has a relative maximum at the pointe 1 — Ra/Nz. Therefore, foMa > Rz > 0, the

maximum value of the exponent in the integrand of (11) is attaineg=ad. This indicates
that the main contribution of the integrand to the integral (11) comes from the pegift

and the integral may be approximated replacjig) in (11) by its Taylor polynomial at
t = 0 [5]. We split the functionf (¢) in two terms:

f®) = @)+ f2() (13)
where f1(t) = (1 — «) t is the Taylor polynomial of degree 1 g¢f(r) atr = 0 and
fa() = f(1) — L—a)t =aft +log(l—1)]. (14)

With this splitting, the integral in (11) reads

1
ya+1,z) =z / T g7/ gy (15)
0
We expand
o0
&2 — pat (1 1)@ — Z (), |t <1, (16)
k=0
with

k

_ (—a); a
C"(“)‘Z;; IR

k—j

17
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Table 4

First few coefficientsy (a) defined in (17) and used in (20)

k ci(a) k ck(a)

0 1 4 (—2a+a?/8

1 0 5 (—6a + 542)/30

2 —a/2 6 (—24a + 26a2 — 343) /144

3 —a/3 7 (=120 + 1542 — 3543)/840

The first few coefficientsy (a) are detailed in Table 4. From the differential equation
(L—1)f' 4+ atf =0, satisfied by?2®) we derive:

crti1(a) = kci(a) — ack—1(a)]. (18)

il
From f2(0) = f;(0) = 0 we see that [4, Lemma 2.1]

co=1, c1=0, ck(a)zO(aWzJ), la| — oo. (29)

The expansion in (16) converges uniformly with respectston [0, 1] (when

fRa > 0). Hence we can substitute (16) in (15) to obtain, after interchanging summation
and integration,

o
ya+12)=e72") @) P —a), (20)
k=0
where the coefficients, (@) are given in (17) or (18)—(19) and

1

o G-ay kq  Yk+1la—2)
Pi(z—a)= / eV dr = _(a kL (21)
0
Taking into account that
- = 2 fl g o4 [0-1
T T 4 —ar ) € S dz-a)f| z-a
0 . (22)
. k! —a k J!
- (a—z)k+1_e Z(j)(a_z)j+l

j=0
and thate*~“ is exponentially small foiiz < %ia, we see that

Oz—a)=0(z—a)* ), |z—al - . (23)
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Table 5
First few functionsd; (z — a) defined in (22) and used in (20)
k Dy (z—a) k Py (z—a)
1 z—a z—a
0 e 2 2 e [ 2 2 ]
a—z a—z (a—z)3 a-z a—z (a—z)>?
1 z—a 1 z—a
1 < [1+ } 3 6 ¢ [1+ 3 & , & ]
(a—22 a-z a—z (a—2% a-—z a-z (a—z)2 (a—2z)3
Table 6

Numerical experiments about the relative errors in the approximatipiicofz) using (20) for reak andz with a
away fromz and different values of

a z n=1 n=3 n==6 n=29 n=12
50 10 0.03 0.001 0.0004 0.00003 x
100 40 0.02 0.001 0.0003 946 6.3e-8
200 80 0.01 0.0003 0.00003 2:9¢ 1.1e-6
500 180 0.004 0.00004 176 1.8e-9 1.3e-10
1000 500 0.003 0.00003 9.5¢@ 3.0e-10 4.2e-11
Table 7

Numerical experiments about the relative errors in the approximatigr{aafz) using (20) for complex: andz
with a away fromz and different values of

a z n=1 n=3 n==6 n=9 n=12
50+ 20¢ 20— 5i 0.03 0.002 0.0006 0.00005 526
100+ 20¢ 50— 5i 0.03 0.002 0.0005 0.00001 .36
200+ 20¢ 80— 5i 0.01 0.0003 0.00003 .Be-7 5.0e-8
500+ 20¢ 200—5i 0.005 0.00005 Be—6 29e-9 27e-10
1000+ 20¢ 500 5i 0.003 0.00003 9e-7 3.3e-10 40e-11

On the other hand, integrating by parts in (21) we find the recurrence:

1
Dr(z —a) = [¢7¢ —kPr_1z—a)], k=123, ...,
Z—a
The first few functionspy (a) are detailed in Table 5.

The expansion (20) is convergent. But from (19) and (23) we see that it is also asymp-
totic for largea — z provided that — z = O(a1/2+%), ¢ > 0 andfz < Ra.

3.1. An alternative expansion

We consider in this subsection the formula [11, p. 279, Eq. (11.9)]

o k

y(a+1z) =zt Z <

S e 24
=5 @+ D1 (24)
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as an alternative expansion to expansion (20). As well as (20), this series is convergent.
It is also asymptotic for large andz providedz = O(al~¢), ¢ > 0. We compare below
convergence and asymptotic properties of (20) and (24).

We consider largé (in particulark > R(a)). From (17) we write

c(a)—ib:(_a)j a
TS =)

k= kf: (—a); a7 n Xk: (-a);
it (k=) k=P

| !
j=iot1 jmk21 I

with jo = [N(a)] + 2. For largek, the first sum is clearly, at most, of the order
O((1 + ab)/(k — jo)h). Using (—a)j =T —a)/T(-a), IT(j —a)| <|T'(G —R@)|
andI'(j — N(a)) < j! for j > jo, we see that the second sum above is, at most, of the
orderO((1+ a*)/(k/2 — 1)!). Finally, for the last sum we write:

i (—a);| lal*™/ _ T(k/2+ 1= %) i a7 D*/24 1= 9i(@)

it k=) T T (=a)|T(k/2+2) e k=)~ Nl k/2+2)
=2

j=5+1
Using the Stirling approximation of the gamma function, we see that this last sum is of
the orderO(k~1-"@) for large k. Therefore, using these estimations, we haue) =
O(k=17M@)) ask — co. From (21) we see thdth(z — a)| < (k + 1)~L. Therefore, ex-
pansion (20) has the following rate of convergengga)®; (a) ~ k—2 M@ ask — oo,
whereas expansion (24) has a stronger factorial rate of convergence.

On the other hand, the asymptotic properties of (20) are better than those of (24):
the conditionz = O(a1~¢), ¢ > 0 is more stringent than the conditian- z = O(a'/%1¢),
¢ > 0. In particular, the asymptotic character of (24) for largandz requires|z| < |a|,
whereas expansion (20) is asymptotic for largand z when|z| > |a| providedfi(a) >
N (z) anda away fromz.

Tables 8 and 9 illustrate the different rate of convergence and asymptotic accuracy of
expansions (20) and (24).

Table 8
Numerical experiments comparing the rate of convergence of expansions (20)
and (24) when approximatingz—4~1y (a + 1, ) for fixeda = 20 andz = 10

n approximation (20) approximation (24)
5 0.0935918 0.0847679
10 0.0909609 0.0851108
20 0.0866497 0.0851121
30 0.0845521 0.0851121
40 0.0850625 0.0851121
00 0.0851121 0.0851121

Second and third columns represent the approximations supplied by (20)
and (24), respectively, for several number of summandshe last row g = co)
represents the exact valueeéfz—“‘ly(a + 1, z) up to 7 digits.
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Table 9

Numerical experiments comparing the asymptotic accuracy of expansions (20) and (24) when approximating
e“z=% 1y (a + 1, z) for several values af andz and fixed number of summands= 3

b4 a exact value approximation (20) approximation (24)
10 100 0.01097590 0.01097390 0.01108720
10 1000 0.00100907 0.00100907 0.00101009
100 200 0.00980752 0.00980000 0.00871903
100 1000 0.00110974 0.00110974 0.00110987
1000 2000 0.00099801 0.00099800 0.00087469

The third column represent the exact valueeéf—“‘ly(a + 1,z) up to 8 digits. Fourth and fifth columns
represent the approximations supplied by (20) and (24), respectively.

4. R(a) > =1, K(a) < R(z) and away from thetransition point

We consider in this section the functidfia + 1, z):

o0

Fa+172) :/u”e_” du, |Arg(z)| <. (25)

z
After the change of variable = z(1 + r) and using the Cauchy residue theorem we have
ooel?
Ta+1z) =z e / e Ddt, f()y=t—alog(l+1), (26)
0
forany|6| < w/2 with |0 + Arg(z)| < /2.

The asymptotic features of (26) fihu < %z are those of the integral (15) fota > Rz.

Then, repeating the same arguments as in the previous section we obtain the formal expan-
sion

@41 2)~ e igatl 5 %@ 27
(a+lz)~ez ];(z—a)k“’ (27)
with
i (K (—a); aki
=(-1 s 28
crla) = ( )%(l) T (28)
and
cr+1(a) = —k[ck(a) +a ckfl(a)], k=1,2,3,.... (29)
Again,

co=1, c1=0, cx(a) = (’)(aWZJ), la| — oo. (30)
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Table 10

First few coefficientsy (a) defined in (28) and used in (27)

k ck(a) k c(a)

0 1 4 —3(2a —a?)

1 0 5 46a — 5a2)

2 —a 6 —5(24a — 2642 + 3a3)
3 2 7 6(120u — 15442 + 3543)

The first few coefficients, (a) are detailed in Table 10.

Expansion (27) is not convergent because we cannot apply the arguments of uniform
convergence used in Section 3. Nevertheless it is asymptotic fordargeprovided that
a —z = O(al/?+¢) for anye > 0. We do not offer any proof of this here because expan-
sion (27) is just the expansion previously derived by Tricomi [12].

5. Thetransition point

The expansions given in the three preceding sections are not valid near the transi-
tion pointa = z. We consider here another variation of the integral representation (1) of
I'(a + 1, z) in order to derive an asymptotic expansion valid at the transition point:

Fla+1,z2)= / te"dt. (31)
C1

In this formula,Cy is a simple path joining the point= z with the pointr = oce’® with
—m/2 <6 < /2 and which does not cross the negative real axis (see Fig. 1(left)).
After the change of variable= a(1 + u), (31) is transformed in

Ta+1,2) :e—aaa+l/6—a(u—log(l+u)) du, (32)
C2

whereC, is a simple path joining the poimt= z/a — 1 with the pointr = cce! @~A9(@)
and which does not cross the lifel, —oco/a) (see Fig. 1(right)).

The functionf (u) = u — log(1 + u) in the exponent in (32) has a simple saddle point
at u = 0, where f(0) = 0. The main contribution of the integrand to the integral (32)
comes from the point = 0 and the integral may be approximated replaciitg) in (32)
by its Taylor polynomial aiz = 0 [5]. We split the functionf («) in two terms: f(u) =
$u?+ f3(u), where3u? is the Taylor polynomial of degree 2 ¢f(u) atu = 0 and f3(u) =
u—log(l+u) — %uz. With this splitting, the integral in (32) reads

MNa+12) = e_”a”+lfe_%“2_”f3(“) du. (33)
C



478 Ch. Ferreira et al. / Advances in Applied Mathematics 34 (2005) 467485

zla-1 A Im(u)

Im(t) A \
Arg(a) Re(u)
z

—~— -1

\/

6-Arg(a)

Fig. 1. Integration patl®; in formula (31) (left). Integration paté, in formula (32) (right).

Table 11

First few coefficientsy (a) defined in (35) and used in (36)

k ci(a) k c(a)

0 1 4 —a/4

1 0 5 a/5

2 0 6 (—=3a+4?)/18
3 a/3 7 (12a — 74%)/84

We expand
) o
W = /2 (L L) =N ey, Jul <1, (34)
k=0
with
k Li/2] k—j !
(_a) il a J a
= (—DF ’ 2) 3
cx(a) = (-1 ;; (j_2l)!l!(k—j)!<2> (%)

The first few coefficients; (a) are detailed in Table 11. From the differential equation
(L+u) f' —au?f =0, satisfied by~ 23 we derive:

1
cre1(@) = ¢ - 1[a6k72(a) — key(a)].
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From f3(0) = f3(0) = f3'(0) = 0 we see that [4, Lemma 2.1}(a) = 1 andci(a) =
c2(a) = 0. Using also the above recurrence we see that) = O(@*/3) asa — oo.
Replacing the expansion (34) in (33) we obtain

n—1
Ma+1,2)= e‘“a““[ch (@)Pi(a,2) + Ru(a, z>], (36)
k=0
with
P, 2) = f ke 8 du (37)
C2
and
5 n—1
R,(a,2) E/e_%” |:e_“f3(”) — ch(a)uk:|du. (38)

The convergence of integrals (37) and (38) requires the additional hypotifesis 22 <
Arg(a) < 20 4+ /2. After a straightforward computation we find

_ —(z—a)?/(2a)
Po(a,z) =,/ %erf0<%>, P1(a,z) = 67 (39)
a

and, fork=1,2,3,...,

dra a
P 7)) = (=2)F T2 —erfc b\/i>] 40
2%(a,2) =(=2) \/;dak[ﬁ ( 2 s (40)
and
dk T e—ab®/2
Poi1(a,2) = (-* — [ ] : (41)
da a b=(z—a)/a
On the other hand, integrating by parts in (37) we find thatkfer2, 3,4, ...,
1 o \k-1
ua )=~ [(k ~ Dy, 2) + (%) e @ <2“>]. (42)
From (40) and (41) or from (39) and (42) we see that
—(k+1)/2 € 12
Dy (a. 2) = e~/ (@) { Ola ) ) it |2 a|2< lal, 43)
O @z—a)* b iflz—al*>|al.
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Table 12
Asymptotic order of the first 9 terms of the sequeng@:)®y (a, z) in (36) (the factor— /(24 is omitted)

k 0 1 2 3 4 5 6 7 8
lz—al*<lal a2 0 0 a7l a=3/2 a2 -3/ a2 .52
lz—a>la] a¥2 0 0 z-a)2 Gz-a)3 G-a)? G-a)3 Gz-a?* G-a)"

Therefore, using that, (a) = O(a*/3) asa — oo, we have

O(ak/31-(k+1)/2) if |z —al®><lal,

44
O@*3=kiz — )= if |z —al> > |al. @

k(@) Py (a, z) = e~ 0%/ {

Then, the sequeneg(a) Py (a, z) is an asymptotic sequencezif-a = o(a%/®) asa — co.
Finally, we show that the remaind&;, (a, z) in (36) (defined in (38)) is of the same
order than the first neglected term in the expansion (36). For this purpose we write

n—1 00
o—af3w) _ ch(a)uk = ch(a)uk, lu| < 1. (45)
k=0 k=n

We deform and split the integration path in the right-hand side of (38)> C3UC4 UCs,
where(Cs is a straight line joining the points = z/a — 1 andu = 0; C4 is a straight line
joining the pointsu = 0 andu = s, s := ¢!~A9(@): and(s is a straight line joining the
pointsu = s andu = s - co (see Fig. 2):

Ru(a,z) =RV (a,2) + RP(a, 2), (46)
A Im)
,/'éla-1 1 .
G Re(u)
\‘\ C4 ,/I
R /9-Arg(a)
CS

Fig. 2. Integration path€3, C4 andCs in formulas (47)—(48).
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with
) . n—1
RV, z)= / e 2" |:e_“f3(”) - ZCk (a)ukj|du (47)
C3UCs k=0
and
) . n—1
Rr(lZ) (a,2) = / e 2" |:e_“f3(“) — ch(a)ukj|du. (48)
Cs k=0

If |z —a| < |a|, then the series in the right-hand side of (45) converges uniformly with
respect tar onC3UCy4. Introducing (45) in (47) and interchanging the orders of summation
and integration we obtain

00
Rr(ll) (a,z) = ch(a) / uke_aMZ/z du
k=n z/a—1

- o [T AL ﬁ ~ \/E
— Z cox(a)(—2) \/;dak [a (erfc(b 2) erfc(s > b eara

k=[(n+1)/2]

o0
+ Y car@(=2F
k=|n/2]

(49)

k [eab2/2 ecst/Z]
da* a b=(z—a)/a

For largea, this expression is of the order of the first term of the sefi&s,, (a)®,(a, 2)),
provided thath(as?) > R((z — a)%/a).

On the other hand, after the change of variable- r in the integral (48) defined by
u=sr,r €[1,00), we have

[o,8]

n—1
IR?(a,2)] </ [e|a|g1<r,Arg<a),0>+eagz(r,Arg(a>,e) 3 ctayrtst :|dr, (50)
1 k=0

with

g1(r, Arg(a), 6) = r cos — cogArg(a)) log \/1 +7r24 2rcog6 — Arg(a))

rsin@ — Arg(a)) >

(51)
1+ rcog6 — Arg(a))

+ sin(Arg(a)) arctar(

g2(r, Arg(a), 8) = %rz cog20 — Arg(a)). (52)
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The derivative of the functiog (r, Arg(a), 8) with respect to- is

dga(r,Arg(a),0)  cos20 —Arg(a)) + r cOS9
dr T 14,24 2rcos0 — Arga))

(53)

This is non-negative thanks to the hypothesey2 <6 <n/2 and @ — /2 < Arg(a) <

20 + /2 and therefore, the functian (r, Arg(a), 0) is an increasing function of. More-

over, within this hypotheses, the functiga(r, Arg(a), 6) is also an increasing function

of r. Therefore, both exponentials in the right-hand side of (50) attain their maximum
inside the integration interval at the point= 1. Then,

RP(a,z) = O(e14Is@AG@.0) | p~lalg2LAG@.0) = (=45 +e—as2)' (54)

For largea, this expression is of the ordé€?(c,(a)®,(a, z)), provided thath(as) >
N((z — a)?/a). Then, from (46), (47), (48), (49) and (54) we have thi(a,z) =
O(cn(a)®ny(a, 2)) asa, z — oo With a — z = 0(a?/3) provided that

|z — al? co{2Arg(z — a) — Arg(a)) < |a|?Min{cosd, cog(20 — Arg(a))}.

This inequality holds for large enough thanks to the hypothesd8| < /2, |20 —
Arg(a)| < /2 andz — a = 0(a®3). The optimum value fof is attained ab = Arg(a)/3.

Tables 13 and 14 show some numerical experiments about the approximation supplied
by (36).

Table 13

Relative errors in the approximationpta, z) supplied by (36) for = 100,z on a semicircle of radius 2 around
and different values of

a z n=1 n=4 n=10 n=16
100 102 0.06 0.001 0.0006 0.00003
100 100+ 2¢i7/4 0.06 0.0009 0.0005 0.00003
100 100+ 2¢i7/2 0.05 0.0008 0.0005 0.00002
100 100+ 2¢i37/4 0.04 0.0007 0.0004 0.00002
100 98 0.04 0.0007 0.0004 0.00002
Table 14

Relative errors in the approximation ofa, z) supplied by (36) for different values af, z neara and different
values ofn

a z n=1 n=4 n=10 n=16
200— 100 180— 105 0.01 0.0003 0.00006 4.46
500+ 5i 450+ 6i 0.003 0.00007 0.00001 5.0&
1000— 30i 980— 25 0.01 0.00005 4.6e6 9.8e-8
4+ 5000 10+ 4900 0.005 0.00003 1.4€7 7.0e-10

10000 9900+ i 0.002 3.5e-6 4.4e-8 1.0e-10
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6. Concluding remarks

The main results of the paper are the following:
(A) For fta < 0, |Arg(z)| < 7 and largez andz with a — z = O(a¥/?1¢), ¢ > 0,

| [ele)
I'(a,z) ~ —%ei”“ SIAI@) sgn(Arg(a)) — z%e ™~ kX:(:) %,
with
Po(a) =1, ®1(a) =1,
O(a) =k Pr_1(a) + a(l—k) Dy _2(a), k=23,4,...
and

1 if Arg(z)/Arg(a) > 1,
R=1{1/2 ifArg(z)/Arg(a) =1,
0 if Arg(z)/Arg(a) < 1.

(B) Forfiz > Ma > —1, |Arg(z)| < 7 and largez andz with a — z = O(a/?¢), ¢ > 0,

o0
o —zatl ck(a)
Fa+1z)~e *z gi(z—a)k“’

with
co=1, c1=0, cr+1(a) = —k[ck (a) + ack_l(a)], k=123, ....

(C) For%ia > —1, |Arg(z)| < & andfz < Ra,

o0
y(a+1z) =e 70" ZCk(a)(Pk(Z —a),
k=0

with

1
co=1, c1=0, ckv1(a) = m[kck(a) —ac-1@], k=123, ...

and
_ eZ*a

1
Po(z —a) = R

1
Dz —a)= [ —kDp 1z —a)], k=1,23,....
Z—a



484 Ch. Ferreira et al. / Advances in Applied Mathematics 34 (2005) 467485

Im(a) A

z 7\‘-

ID/I\

Re(a)

C

Fig. 3. Regions of validity of the above expansions depending on the valuaraf the relative value of andz.
Asymptotically, the radius of the region D must be of an order betwe®u1/2) and©(¢?/3). An intermediate
value isO(a>/12).

The above expansion is an asymptotic expansion for lagyedz provided thatt — z =
O@Y?#), ¢ > 0.
(D) For |Arg(z)| <  and largez andz with a — z = 0(a?/3),

o0
Fa+12)~e“a" ™Y @) Pila. 2).
k=0

with

co(a) =1, c1(a) =ca(a) =0,

7 Z—a e—(z—)?/(2a)
Pola,z) = Zerfc( = ) D1(a,7) = —

and, fork=2,3,4,...,

cr+1(a) = [ack_z(a) — key, (a)], k=223,4,...,

k+1

1 _ o o\k-1
Pr(a,z) =— [(k —D®y_o(a,z) + (ﬂ) e—(z—a)z/(Za)]‘
a a

As it was stated in the introduction, the main benefit of the above expansions is their
simplicity. As far as we know, expansions (A), (C) and (D) are new, whereas (B) was
previously obtained by Tricomi [12]. The asymptotic sequences in the expansions (A)
and (C) are different from those in [2,6,12]. The coefficients are simpler and the ex-
pansions are valid in different regions far, z). Moreover, expansion (C) is convergent.
The expansion (D) (valid for nearz), as well as Paris’ expansion, is given in terms of
complementary error functions, but the coefficients are simpler than in Paris’ expansion.
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Moreover, it is uniformly valid ini(a — z), whereas Paris’ expansion distinguishes be-
tweenN(a — z) > 0 andN(a — z) <0 [8, Egs. (2.15), (3.4)]. On the other hand, for a
given precision, Paris’ expansion requires less terms than expansion (D).

If the asymptotic sequena® (z —a) in (C) is replaced by its asymptotic approximation
for largea — z (with % (a — z) > 0) given by the first term on the right-hand side of (22),
our expansion reduces to Tricomi’s expansionyfaa, z) [12], which is not convergent. In
fact, the exponentially small terms @ (z — a) are necessary for the convergence of (C).
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