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Abstract

We consider the Gauss hypergeometric function F (a, b + 1; c + 2; z) for a, b, c ∈
C, c 6= −2,−3 − 4, ... and |arg(1 − z)| < π. We derive a convergent expansion of
F (a, b+1; c+2; z) in terms of rational functions of a, b, c and z valid for |b||z| < |c− bz|
and |c− b||z| < |c− bz|. This expansion has the additional property of being asymptotic
for large c with fixed a uniformly in b and z (with bounded b/c). Moreover, the asymptotic
character of the expansion holds for a larger set of b, c and z specified below.
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1 Introduction

The asymptotic behaviour of the Gauss hypergeometric function F (a, b; c; z) when
different combinations of a, b, c and z are large is a subject of recent interest [4], [6], [9],
[12]. The hypergeometric function is defined by the power series:

F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)nn!
zn, |z| < 1, c 6= 0,−1,−2, . . . . (1)

This expansion is an asymptotic expansion of F (a, b; c; z) for z → 0 and/or c → ∞. The
condition |z| < 1 may be relaxed still keeping the asymptotic character of the expansion
for large c [11].
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A translation formula for F (a, b; c; z) [[8], p. 113, eq.(5.11)] can be used to obtain an
asymptotic representation of F (a, b; c; z) for large values of z with | arg(−z)| < π [[8], p.
127] :

F (a, b; c; z) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

(−z)−a
∞∑

n=0

(a)n(1− c + a)n

(1− b + a)nn!
1
zn

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b
∞∑

n=0

(b)n(1− c + b)n

(1− a + b)nn!
1
zn

.

But when one or several of the parameters a, b, c or z are large (except when only
c or z are large), the asymptotic study is more difficult. Some authors have obtained
asymptotic expansions of F (a, b; c; z) with certain restrictions on the parameters. Wagner
provides in [12] an asymptotic expansion of F (a, b; c; z) when c → ∞ with a2 = o(c) and
b2 = o(c). This result is obtained from an integral representation of F (a, b; c; z) followed
by contour deformations and series expansions.

Several authors have focused their attention on the asymptotic behaviour of

F (a + e1λ, b + e2λ; c + e3λ; z), ej = 0,±1, λ →∞. (2)

In [13], Watson obtained an asymptotic expansion of F (a+λ, b+λ; c+2λ; z), F (a+λ, b−
λ; c; z) and F (a, b; c + λ; z) in terms of inverse powers of λ via contour integrals and the
steepest descent method, see also [[7], chap. 5, section 9]. However, these expansions are
only valid in small regions of z. In [4], Jones obtains a uniform asymptotic expansion of
F (a + λ, b− λ; c; 1/2− 1/2z) when λ →∞ with | arg z| < π in terms of Bessel functions.
Jones uses for his analysis Olver’s method [7], which is based on the linear second order
differential equation satisfied by F (a, b; c; z). More recently, Olde Daalhuis has obtained
an asymptotic expansion of F (a, b− λ; c + λ;−z) in terms of parabolic cylinder functions
and of F (a+λ, b+2λ; c;−z) in terms of Airy functions [6]. These expansions hold for fixed
values of a, b and c, and are uniformly valid for z with | arg z| < π. Olde Daalhuis uses
Bleinstein’s method applied on a contour integral representation of F (a, b; c; z) in which a
saddle point and a branch point coalesce.

In [9], Temme has shown that the set of 26 possible cases in (2) can be reduded to
only four cases:

(A) e1 = e2 = 0, e3 = 1; (B) e1 = 1, e2 = −1, e3 = 0;
(C) e1 = 0, e2 = −1, e3 = 1; (D) e1 = 1, e2 = 2, e3 = 0.

For case (A), Temme obtains the uniform asymptotic expansion

F (a, b; c + λ; z) ∼ Γ(c + λ)ζb−a

Γ(c + λ− b)

∞∑

s=0

gs(z)(b)sζ
sU(b + s, b− a + 1 + s, ζλ) (3)

where U is the confluent hypergeometric function, ζ = ln[(z − 1)/z] and gs are the coef-
ficients of the Taylor expansion of g(t) ≡ (t + ζ)a

[
(et − 1)/t

]b−1
e(1−c)t(1 − z + ze−t)−a

at t = 0: g(t) =
∑∞

s=0 gs(z)ts. Expansion (3) is an asymptotic expansion when λ → ∞,
uniformly with respect to bounded values of ζ (z bounded away from the origin).
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In this paper we are concerned with a generalization of cases (A) and (C). We study
asymptotic expansions of F (a, b; c; z) for large values of c uniformly in b with bounded b/c.
In [2] we used a modification of the steepest descent method (see [3]) to derive uniform
asymptotic expansions of the incomplete gamma functions Γ(a, z) and γ(a, z) for large
values of a and z in terms of elementary functions. We apply here the same idea to derive
a uniform asymptotic expansion of F (a, b; c; z) for large b and c using the integral repre-
sentation (4) of F (a, b; c; z) given below. The approach consists of: (i) a factorization of
the integrand in that integral in an exponential factor times another factor and (ii) an
expansion of this second factor at the asymptotically relevant point of the exponential
factor. The main benefit of this procedure is the derivation of easy asymptotic expansions
(in terms of elementary functions) with easily computable coefficients.

In Section 2 we derive a convergent expansion of F (a, b + 1; c + 2; z) valid under the
restrictions |b||z| < |c− bz| and |c− b||z| < |c− bz| which has also an asymptotic character
for large c uniformly in b and z (with bounded b/c). In Sections 3 and 4 we show that
the expansion obtained in the previous section keeps its asymptotic character for large
c (uniformly in b and z with bounded b/c) even if the restrictions |b||z| < |c − bz| and
|c − b||z| < |c − bz| do not hold. In the remaining of the paper we consider a, b, c ∈ C,
c 6= −2,−3,−4, ... and |arg(1− z)| < π.

2 The expansion

The Gauss hypergeometric function may be written in the form [[8], p. 110, eq. (5.4)]

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1 (1− t)c−b−1 (1− tz)−a dt, <c > <b > 0.

For convenience, we consider a shift in the parameters b and c and write the hypergeometric
function in the form

F (a, b + 1; c + 2; z) =
Γ(c + 2)

Γ(b + 1)Γ(c− b + 1)

∫ 1

0
ec f(t) g(t) dt, (4)

with

f(t) ≡ b

c
log t +

(
1− b

c

)
log(1− t), g(t) ≡ (1− tz)−a, <c + 1 > <b > −1. (5)

The unique saddle point of f(t) is located at t = b/c. We replace the function g(t) in
(5) by its Taylor expansion at t = b/c with convergence radius |1/z − b/c| [3]:

g(t) =
∞∑

k=0

(a)k zk

k!
(
1− b

c z
)k+a

(
t− b

c

)k

,

∣∣∣∣t−
b

c

∣∣∣∣ <

∣∣∣∣
1
z
− b

c

∣∣∣∣ . (6)

This expansion converges uniformly with respect to t ∈ [0, 1] when the following conditions
hold:

|b||z| < |c− bz| and |c− b||z| < |c− bz|. (7)
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For the values of z, b and c verifying (7), we can introduce (6) in (4) to obtain, after
interchanging summation and integration,

F (a, b + 1; c + 2; z) =
∞∑

k=0

(a)k zk

k!
(
1− b

c z
)k+a

Φk(b, c), (8)

where the functions Φk(b, c) are defined by

Φk(b, c) ≡ Γ(c + 2)
Γ(b + 1)Γ(c− b + 1)

∫ 1

0
ec f(t)

(
t− b

c

)k

dt. (9)

Using again the integral representation (4) we see that Φk(b, c) is a very simple hyper-
geometric function writable in terms of rational functions of b and c:

Φk(b, c) =
(
−b

c

)k

F
(
−k, b + 1; c + 2;

c

b

)
=

k∑

j=0

(
k
j

) (
−b

c

)k−j (b + 1)j

(c + 2)j
. (10)

The first few functions Φk(b, c) are detailed in Table 1.

k Φk(b, c)

0 1

1
c− 2 b

c(c + 2)

2
(2 + b)c2 − b(6 + b)c + 6b2

c2(c + 2)(c + 3)

3
(6 + 5b)c3 − 3b(8 + 5b)c2 + 2b2(18 + 5b)c− 24b3

c3(c + 2)(c + 3)(c + 4)

Table 1: First few functions Φk(b, c) defined in (9) and used in (8).

We have derived the above expansion under the restrictions <c + 1 > <b > −1,
|b||z| < |c − bz| and |c − b||z| < |c − bz|. But the restriction <c + 1 > <b > −1 is
superfluous: for large values of k we have that [10]

F (−k, b; c; z) =
Γ(c)

Γ(c− b)
(kz)−b[1 + o(1)] +

Γ(c)
Γ(b)

e±πi(b−c)(1− z)c−b+k(kz)b−c[1 + o(1)]

when k →∞ with b and c fixed complex numbers, c 6= 0,−1,−2, ..., z 6= 0 and |arg(1−z)| <
π. Therefore,

Φk(b, c) ∼ γ(k)αk when k →∞
with γ(k) ≡Max{k−b−1, kb−c−1} and α ≡ Max

{∣∣ b
c

∣∣ ,
∣∣1− b

c

∣∣}.
Then, the terms of the series (8) verify:

(a)k zk

k!
(
1− b

c z
)k+a

Φk(b, c) = O(ka−1γ(k)βk) when k →∞,
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b + 1 c + 2 n = 1 n = 3 n = 5 n = 7 n = 9

10 eiπ/4 20 eiπ/6 0.015019 0.001762 0.000234 0.000039 7.814e-6

50 e−iπ/3 100 e−iπ/4 0.006754 0.000072 1.682e-6 6.055e-8 2.886e-9

100 -30i 200+ 2i 0.003617 0.000019 2.255e-7 3.987e-9 9.308e-11

200 eiπ/18 400 e−iπ/18 0.001036 2.672e-6 1.359e-8 1.065e-10 5.651e-12

10-500 i 40-300 i 0.003759 0.000010 5.701e-8 4.285e-10 2.930e-12

Table 2: A numerical experiment about the relative error in the approximation of F (−i, b + 1; c +
2;−5− 3i) for several values of b and c by using (8) with n summands.

with

β ≡ Max
{∣∣∣∣

bz

c− bz

∣∣∣∣ ,

∣∣∣∣
(c− b)z
c− bz

∣∣∣∣
}

< 1.

Therefore, expansion (8) has almost a power rate of convergence under the restrictions
|b||z| < |c − bz| and |c − b||z| < |c − bz| (and the restrictions <c + 1 > <b > −1 are not
necessary).

On the other hand, from [[1], eq. 15.2.10] we find the recurrence:

Gk(b, c) =
1

c + k + 1

[
k

(
1− 2

b

c

)
+ (k − 1)

b

c

(
1− b

c

)
G−1

k−1(b, c)
]

, k ≥ 2. (11)

where
Gk(b, c) ≡ Φk(b, c)

Φk−1(b, c)
, k = 1, 2, 3, ....

From the explicit values of Φ0 and Φ1 given in Table 1 we see that G1(b, c) = O(c−1)
and G2(b, c) = O(b/c) when c →∞ with bounded b/c.

From this behaviour of G1 and G2 and the above recurrence, it may be shown by
induction that

Gk(b, c) = O(b/c) when b, c →∞ with bounded b/c and even k.

Gk(b, c) = O(c−1) when b, c →∞ with bounded b/c and odd k.

Therefore,

Φk(b, c) = O
(

b1−kMod2

c
Φk−1(b, c)

)
when c →∞ with bounded b/c. (12)

Then, expansion (8) is an asymptotic expansion for large c with fixed a uniformly in
b and z with bounded b/c. Table 2 contains some numerical experiments which show the
accuracy achieved by expansion (8).

The asymptotic properties of the expansion (8) are better when b/c = 0 or b/c = 1. In
these cases, from the recurrence (11) we have that

Φk(b, c) = O (
c−1Φk−1(b, c)

)
when c →∞.
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The expansion (8) was already obtained by Nφrlund in [[5], eq. (1.21)], although
without any mention to the asymptotic properties of the expansion. Also, the conditions
for the convergence of (8) given there are more restrictive: (|b|+ |c|)|z| < |c− bz|.

3 Asymptotic properties of the expansion (8) for real b/c

In the previous section we have shown that expansion (8) is convergent and asymptotic
for large c (uniformly in b and z with bounded b/c) if b, c and z verify (7). In this section
we will show that the expansion (8) keeps that asymptotic character if 0 < b/c < 1 (even
if conditions (7) do not hold). In the remaining of this section we consider 0 < b/c < 1
and −1 < <b < <c + 1.

Expansion (6) is not uniformly convergent for t ∈ [0, 1] if conditions (7) do not hold.
Nevertheless, we can approximate the integral (4) by replacing the function g(t) by its
Taylor expansion at the point t = b/c:

g(t) =
n−1∑

k=0

(a)k zk

k! (1− b
c z)k+a

(
t− b

c

)k

+ gn(t) (13)

with gn(t) = O((t − b
c)

n) when t → b/c. Introducing (13) in (4) and interchanging
summation and integration we obtain

F (a, b + 1; c + 2; z) =
n−1∑

k=0

(a)k zk

k! (1− b
c z)k+a

Φk(b, c) + Rn(a, b; c; z), (14)

where the functions Φk(b, c) are given in (9) or (10) and

Rn(a, b; c; z) ≡ Γ(c + 2)
Γ(b + 1)Γ(c− b + 1)

∫ 1

0
ec f(t) gn(t) dt. (15)

The key point here is to use the idea given in [3]: the critical point b/c ∈ (0, 1). Then, the
Laplace method can be applied to the integrals (9) to obtain their asymptotic behaviour
for large c (or large b and c with bounded b/c) [3]:

Φk(b, c) = O
(
c−

k+1
2

)
when c →∞ or b, c →∞ with fixed b/c. (16)

On the other hand, we can apply also the Laplace’s method to the remainder Rn(a, b; c; z)
in (15) to obtain [3]:

Rn(a, b; c; z) = O
(
c−

n+1
2

)
when c →∞ or b, c →∞ with fixed b/c. (17)

Thus, from (12) and (17), we see that (14) is an asymptotic expansion of F (a, b+1; c+2; z)
for large c (uniformly in b with bounded b/c). Moreover, from the Lagrange form for the
Taylor remainder we have:

gn(t) =
(a)n(t− b/c)n

n!za(1/z − ζ)n+a
, ζ ∈ (t, b/c) ⊂ [0, 1].
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Then,

|gn(t)| ≤ 1
n!

∣∣∣∣
(a)n

za

∣∣∣∣Max
{
|z|,

∣∣∣∣
z

1− z

∣∣∣∣
}n+<a ∣∣∣∣t−

b

c

∣∣∣∣
n

and, for real b and c and even n we have

|Rn(a, b, c, z)| ≤ 1
n!

∣∣∣∣
(a)n

za

∣∣∣∣ Max
{
|z|,

∣∣∣∣
z

1− z

∣∣∣∣
}n+<a

Φn(b, c).

We remark that the asymptotic properties of the sequence {Φk(b, c)}k obtained in (12)
making use of (11) are slightly better than those derived from the Laplace’s method in
(16).
Table 3 shows a numerical experiment which illustrate the approximation supplied by (8)
for large positive real values of b and c with c > b > 0 when (7) does not hold.

b + 1 c + 2 n = 1 n = 3 n = 5 n = 7 n = 9

20 50 0.1675 0.025198 0.003424 0.000256 0.000084

50 100 0.07295 0.005519 0.000468 0.000044 4.769e-6

100 200 0.036612 0.001398 0.000060 2.972e-6 1.640e-7

250 500 0.014674 0.000225 3.947e-6 7.886e-8 1.780e-9

500 1000 0.007342 0.000056 4.965e-7 4.988e-9 5.673e-11

Table 3: A numerical experiment about the relative error in the approximation of F (4, b+1; c+2;−12)
for different values of b and c by using (8) with n summands. Conditions (7) do not hold for these

values of b, c and z.

4 Asymptotic properties of the expansion (8) for complex b

and c > 0

Write t = x + iy and b/c = u + iv, with x, y, u, v ∈ R. Consider a contour Γ defined as
(see Fig. 1): Γ ≡ Γ1 ∪ Γ2 ∪ Γ3, with

Γ1 ≡ {(−
√

v2/4− (y − v/2)2, y); 0 < y < v},
Γ2 ≡ {(x, v); 0 < x < 1},
Γ3 ≡ {(1 +

√
v2/4− (y − v/2)2, y); 0 < y < v}.

Consider the domain Ω bounded by Γ ∪ [0, 1] and defined by :

Ω ≡
{

z ∈ C,−
√(

=1
z

)(
=b

c
−=1

z

)
≤ <1

z
≤ 1 +

√(
=1

z

)(
=b

c
−=1

z

)}
. (18)
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In this section we extend the results of the previous section to the case b ∈ C with
0 < <b < c and z−1 ∈ C \Ω. In the remaining of this section we consider 0 < <b < c and
z−1 ∈ C \ Ω and use the ideas of the modified saddle point method introduced in [3].

The integrand in (4) is an analytic function of t ∈ C with branch cuts at (−∞, 0],
[1,∞) and, if a /∈ Z, also at [1/z,∞). Then, if z−1 /∈ Ω, the integrand in (4) is an analytic
function of t in the interior of Ω (see Fig. 1). Using the Cauchy’s Residue Theorem, we
deform the integration contour [0, 1] in (4) to the contour Γ:

F (a, b + 1; c + 2; z) =
Γ(c + 2)

Γ(b + 1)Γ(c− b + 1)

∫

Γ
ec f(t) g(t) dt. (19)

0 1 x

y (u,v)

Γ

Γ
Γ

1

2

3(0,v/2)
(1,v/2)


1/z

Ω

Figure 1: The contour Γ is the union of the arc Γ1, the segment Γ2 and the arc Γ3. The arc Γ1 is
a half of the circle x2 + (y − v/2)2 = v2/4 of center (0, v/2) and radius v/2. The segment Γ2 is the
segment y = v, 0 < x < 1. The arc Γ3 is a half of the circle (x− 1)2 + (y − v/2)2 = v2/4 of center
(1, v/2) and radius v/2. The functions f and g are analytic in Ω if z−1 /∈ Ω

The real part of the function f(t) in the exponent of the integrand in (19) reads

<(f(t)) ≡ h(x, y) = u log
√

x2 + y2 + (1− u) log
√

(1− x)2 + y2

+ v arctan [y/(x− 1)]− v arctan (y/x)
(20)

and verifies the following properties:

i) For x ∈ [0, 1], the function h(x, v) has an absolute maximum at x = u. It is a strictly
increasing function of x for x ∈ [0, u) and strictly decreasing for x ∈ (u, 1]. That is,
it has an absolute maximum at x = u over Γ2.

ii) The function h(−
√

v2/4− (y − v/2)2, y) is an strictly increasing function of y for
y ∈ [0, v]. That is, it is strictly increasing over Γ1.

iii) The function h(1 +
√

v2/4− (y − v/2)2, y) is an strictly increasing function of y for
y ∈ (1, v). That is, it is strictly decreasing over Γ3.
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Taking into account i)-iii) we conclude that, over the path Γ, <(f(t)) has an absolute
maximum at t = b/c.

We divide the path Γ in two pieces: Γ = ΓS ∪ΓT , where ΓS is that part of Γ contained
inside a circle of center b/c and radius r ≡ |1/z − b/c|, and ΓT = Γ \ ΓS (see Fig. 2).

0 1 Re(t)

(u,v)

Γ
Γ

Τ
Τ

t t1
0

Im(t)

r
ΓS

Figure 2: ΓS is the piece of the path Γ inside the circle of center (u, v) and radius r ≡ |1/z − b/c|.
Expansion (6) is uniformly convergent for t ∈ ΓS (for those points t of ΓS located between t0 and t1).

Then,
F (a, b + 1; c + 2; z) = FS(a, b; c; z) + FT (a, b; c; z), (21)

with
FS(a, b; c; z) ≡ Γ(c + 2)

Γ(b + 1)Γ(c− b + 1)

∫

ΓS

ec f(t) g(t) dt

and
FT (a, b; c; z) ≡ Γ(c + 2)

Γ(b + 1)Γ(c− b + 1)

∫

ΓT

ec f(t) g(t) dt.

On the one hand, <(f(t)) has an absolute maximum at t = b/c and increases from
t = 0 up to t = b/c and decreases from t = b/c up to t = 1 following the path Γ. On the
other hand, g(t) is bounded on Γ. Then

∫

ΓT

ec f(t) g(t) dt = O
(
ec f(t0) + ec f(t1)

)
when c →∞, (22)

where t0 and t1 are the points of the path Γ located at a distance r from b/c (see Fig. 2).
On the other hand, because of the expansion (6) is uniformly convergent for t inside

the circle of radius r and centre b/c, we can repeat the reasoning of Section 2 to conclude
that

FS(a, b; c; z) =
∞∑

k=0

(a)k zk

k!
(
1− b

c z
)k+a

Φ(S)
k (b, c), (23)

where the functions Φ(S)
k (b, c) are defined by

Φ(S)
k (b, c) ≡ Γ(c + 2)

Γ(c + 1)Γ(c− b + 1)

∫

ΓS

ec f(t)

(
t− b

c

)k

dt.

9



b + 1 c + 2 n = 1 n = 3 n = 5 n = 7 n = 9

50 + 27i 160 0.138447 0.006438 0.000817 0.000281 0.000055

115 + 16i 290 0.074796 0.003316 0.000104 2.185e-6 2.910e-7

155 + 2i 375 0.059992 0.002348 0.000079 2.632e-6 5.259e-8

Table 4: A numerical experiment about the relative error in the approximation of F (6− 5i, b + 1; c +
2;−4 + 3i) for several values of b and c by using (23) with n summands. Conditions (7) do not hold

for these values of b, c and z.

b + 1 c + 2 n = 1 n = 3 n = 5 n = 7 n = 9

60− 2i 140 0.177146 0.013372 0.000620 0.000023 9.267e-7

130− 30i 240 0.134019 0.005836 0.000034 8.676e-6 6.385e-7

150− 7i 345 0.068925 0.001922 0.000031 4.468e-7 7.242e-9

Table 5: A numerical experiment about the relative error in the approximation of F (−4+7i, b+1; c+
2;−7 − 3i) for several values of b and c by using (23) with n summands. Conditions (7) do not hold

for these values of b, c and z.

Using again that <(f(t)) has an absolute maximum over Γ at t = b/c we have that

Φ(S)
k (b, c) =

Γ(c + 2)
Γ(c + 1)Γ(c− b + 1)

{∫

Γ
ec f(t)

(
t− b

c

)k

dt +O
(
ec f(t0) + ec f(t1)

)}
(24)

when c →∞. Using that ec f(t)
(
t− b

c

)k
is an analytic function of t ∈ C with branch cuts

at (−∞, 0] and [1,∞) we deform the integration contour Γ above back to [0, 1]: Γ → [0, 1].
Then, using the results of section 2 we have:

Φ(S)
k (b, c) = Φk(b, c) +

Γ(c + 2)
Γ(c + 1)Γ(c− b + 1)

O
(
ec f(t0) + ec f(t1)

)
when c →∞, (25)

where Φk(b, c) are defined in (9), calculated in (10) and verify the recurrence (11).
Therefore, joining (21), (22), (23) and (25) we have that, even if the right hand side of

(8) is not convergent, it is an asymptotic expansion of F (a, b + 1; c + 2; z) for large c and
fixed a uniformly in b and z (with bounded b/c, 0 < <b < c and z−1 /∈ Ω).

5 Conclusions

We can resume the analysis of the previous sections in the following theorems.
Theorem 1 For a, b, c ∈ C, c 6= −2,−3,−4, ..., |arg(1 − z)| < π, |b||z| < |c − bz| and
|c− b||z| < |c− bz|,

F (a, b + 1; c + 2; z) =
∞∑

k=0

(a)k zk

k!
(
1− b

c z
)k+a

Φk(b, c),
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where

Φk(b, c) ≡
(
−b

c

)k

F
(
−k, b + 1; c + 2;

c

b

)
, (26)

Φk(b, c) = O
(

b1−kMod2

c Φk−1(b, c)
)

when c →∞ uniformly in b with bounded b/c and verify
the recurrence

Φk(b, c) =
1

c + k + 1

[
k

(
1− 2

b

c

)
Φk−1(b, c) + (k − 1)

b

c

(
1− b

c

)
Φk−2(b, c)

]
, k ≥ 2.

Theorem 2 For fixed a ∈ C, |arg(1− z)| < π, −1 < <b < <c + 1 and

i) 0 < b/c < 1 or

ii) 0 < <b < c, bounded b/c and z−1 ∈ C \ Ω,

F (a, b + 1; c + 2; z) ∼
∞∑

k=0

(a)k zk

k!
(
1− b

c z
)k+a

Φk(b, c) when c →∞

uniformly in b and z. The functions Φk(b, c) are given in (26) and Ω is defined in (18).
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