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ABSTRACT The generalized Epstein-Hubbell integral (2) recently in-

troduced by Kalla and Tuan [8] is considered for values of the variable

k close to its upper limit k = 1. Distributional approach is used for

deriving two convergent expansions of this integral in increasing powers

of 1 − k2. For certain values of the parameters, one of these expansions

involves also a logarithmic term in the asymptotic variable 1−k2. Coef-

ficients of these expansions are given in terms of the Appell function and

its derivative. All the expansions are accompanied by an error bound at

any order of the approximation. Numerical experiments show that this

bound is considerably accurate.
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1 Introduction

The Epstein-Hubbell elliptic-type integral is the two parameter integral defined by [5]

Ωj(k) ≡
∫ π

0
(1 − k2cosθ)−j−1/2dθ 0 ≤ k < 1, j = 0, 1, 2, . . . (1)

This integral appears in the application of a Legendre polynomial expansion method to
computations involved in certain radiation problems [3]. In particular, to the compu-
tation of the radiation field off axis from a uniform circular disc radiating according to
an arbitrary distribution law [6].

On the other hand, the Epstein-Hubbell elliptic-type integral is a generalization of
the complete elliptic integrals of the first and second kind [2]:

Ω0(k) =
2√

1 + k2
K

(

√

2k2

1 + k2

)

, Ω1(k) =
2

(1 − k2)
√

1 + k2
E

(

√

2k2

1 + k2

)

,



where K and E are the complete elliptic integrals of the first and second kind respec-
tively [1],[4].

Literature contains several generalizations of the Epstein-Hubbell integral (1). Al-
though the most general one has been proposed recently by Kalla and Tuan [8]:

Λ
(α,β)
(λ,γ,µ)(ρ, δ; k) ≡

∫ π

0

cos2α−1 (θ/2) sin2β−1 (θ/2)

(1 − k2 cos θ)µ+1/2
[

1 − ρ sin2 (θ/2)
]λ

[1 + δ cos2 (θ/2)]γ
dθ, (2)

where α, β, λ, γ, µ, ρ, δ ∈ C/, ℜα, ℜβ > 0, ρ − 1 /∈ R| + ∪ {0} if ℜλ ≥ 1, δ + 1 /∈ R| − ∪ {0}
if ℜγ ≥ 1 and 0 ≤ k < 1.

This integral and some other particular cases (including the Epstein-Hubbell inte-
gral (1)) have been investigated by several authors. Some important results are the
following: limit relationships for the generalized Epstein-Hubbell integral Sµ(k, λ) ≡
22λΛ

(λ+1/2,λ+1/2)
(0,0,µ) (0, 0; k) are given in [13]. A numerical evaluation of Λ

(α,β)
(λ,γ,µ)(ρ, δ; k) is

obtained in [9] by using the tau method approximation with a Chebyshev polynomial
basis. A survey of properties and evaluation techniques for the integral (1) can be found
in [2], as well as important properties of several generalizations of this integral.

Complete power series expansions at k = 0 of the integral (1) or its generalizations
may be obtained by means of a series expansion of the integrand at k = 0. In particular,
a basic representation of (1) by means of the Gauss hypergeometric function may be
found in [15], [16], whereas [7] contains a series expansion at k = 0 of Rµ(k, α, γ) ≡
Λ

(α,γ−α)
(0,0,µ) (0, 0; k). On the other hand, an asymptotic formula for Λ

(α,β)
(λ,γ,µ)(ρ, δ; k) in the

neighborhood of k = 1 has been derived by Kalla and Tuan [8]. Although derived in a
quite clever way, the expansion is given by means of triple series in which the explicit
calculation of its coefficients is not straightforward. Therefore, complete asymptotic
expansions at k = 1 of these integrals have not been fully investigated.

We consider in this paper the problem of finding complete asymptotic expansions of

Λ
(α,β)
(λ,γ,µ)(ρ, δ; k) in the neighbourhood of k = 1. We face the challenge of obtaining easy

algorithms for computing the coefficients of these expansions as well as error bounds at
any order of the approximation. The asymptotic method used for obtaining the expan-
sions will be the distributional approach applied on generalized Stieltjes transforms [17],

[[18], chap. 6], [10], [11]. Then, the generalized Epstein-Hubbell integral Λ
(α,β)
(λ,γ,µ)(ρ, δ; k)

should be written as a Stieltjes transform. For that purpose we perform in (2) the
change of variable t−1/2 = tan(θ/2), obtaining:

Λ
(α,β)
(λ,γ,µ)(ρ, δ; k) = (1 + δ)−γ(1 − k2)−µ−1/2

∫ ∞

0

F (t)

(t + k̄)µ+1/2
dt, (3)

where

F (t) ≡ tα−1 (1 + t)λ+γ+µ−β−α+1/2

(t + ρ̄)λ(t + δ̄)γ
,

ρ̄ ≡ 1 − ρ, δ̄ ≡ 1

1 + δ
, k̄ ≡ 1 + k2

1 − k2
.

(4)
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Then, up to a factor, the Epstein-Hubbell integral is the generalized Stieltjes trans-
form of F (t). For ℜ(α) > 0, ρ̄ /∈ R| − ∪ {0} if ℜλ ≥ 1 and δ̄ /∈ R| − ∪ {0} if ℜγ ≥ 1, F (t)
is a locally integrable function on [0,∞) and satisfies

F (t) =

n−1
∑

k=0

Akt
−k+µ−β−1/2 + Fn(t), (5)

where

Ak ≡
k

∑

l=0

l
∑

j=0

(

λ + γ + µ − β − α + 1/2

j

)( −λ

l − j

)( −γ

k − l

)

ρ̄l−j δ̄k−l (6)

and Fn(t) = O(t−n+µ−β−1/2) when t → ∞. Therefore, the asymptotic methods de-
veloped in [17] [[18], chap. 6], [10], [11] apply to this integral, although only for real
values of the parameters: asymptotic theorems there consider only real values for the
parameters of the integrals. Therefore, in order to apply these theorems to the integral
(3), they must be generalized to the case of complex parameters. In section 2, the
extension to the complex case of distributional asymptotic methods for generalized
Stieltjes transforms is performed, including theorems about error bounds. In the section
3, we apply these methods to the generalized Epstein-Hubbell integral (3) obtaining
asymptotic expansions with error bounds. Several numerical examples are shown as
illustrations. A brief summary and a few comments are postponed to section 4.

2 Distributional approach

The purpose of this section is to obtain asymptotic expansions with error bounds of
generalized Stieltjes transforms

Sf (w; z) ≡
∫ ∞

0

f(t)

(t + z)w
dt (7)

for large z. The parameters w and z are complex and f(t) is a locally integrable function
on [0,∞) which satisfies

f(t) =
n−1
∑

k=K

akt
−k−s + fn(t), (8)

where K ∈ Z/, 0 < ℜs ≤ 1, {ak, k = K, K + 1, K + 2, ...} is a sequence of complex
numbers and fn(t) = O(t−n−s) when t → ∞.

2.1 Asymptotic expansion of Sf (w; z) for large z

In the following, we use the notation introduced in [18]. In particular, we denote by
S the space of rapidly decreasing functions and by <Λ, ϕ> the image of a tempered
distribution Λ acting over a function ϕ ∈ S. Recall that we can associate to any locally
integrable function g(t) on [0,∞) a tempered distribution Λg defined by

< Λg, ϕ >≡
∫ ∞

0
g(t)ϕ(t)dt.
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Since f(t) in (7) is a locally integrable function on [0,∞), it defines a distribution

< f , ϕ >≡
∫ ∞

0
f(t)ϕ(t)dt.

The distributions associated with t−k−s, k = 0, 1, 2, ..., n− 1 are given by [[18], chap. 5]

< t−k−s, ϕ >≡ 1

(s)k

∫ ∞

0
t−sϕ(k)(t)dt if 0 < ℜs < 1,

where (s)k denotes the Pochhammer’s symbol,

< t−k−s, ϕ >≡ 1

(iℑs)k+1

∫ ∞

0
t−iℑsϕ(k+1)(t)dt if 1 6= s = 1 + iℑs

and

< t−k−1, ϕ >≡ − 1

k!

∫ ∞

0
log(t)ϕ(k+1)(t)dt.

To assign a distribution to the function fn(t) introduced in (8), we first define recursively
the k−esim integral fn,k(t) of fn(t) by fn,0(t) ≡ fn(t) and

fn,k+1(t) ≡ −
∫ ∞

t
fn,k(u)du =

(−1)k+1

k!

∫ ∞

t
(u − t)kfn(u)du. (9)

For s 6= 1, it is trivial to show that fn,n(t) is bounded on [0, T ] for any T > 0 and is
O(t−s) as t → ∞. For s = 1 we have fn,n(t) = O(t−1) as t → ∞ and fn,n(t) = O(log(t))
as t → 0+. Therefore, for 0 < ℜs ≤ 1 we can define the distribution associated to fn(t)
by

< fn, ϕ >≡ (−1)n < fn,n, ϕ(n) >≡ (−1)n

∫ ∞

0
fn,n(t)ϕ(n)(t)dt.

Once we have assigned a distribution to each function involved in the identity (8),
we are interested in finding a relation (if any) between these distributions. In fact, this
relation is established in the following two lemmas.
Lemma 1. For 0 < ℜs < 1, n ≥ K + 1, and n ∈ N| , the identity

f =
n−1
∑

k=K

akt
−k−s +

n−1
∑

k=0

(−1)k

k!
M [f ; k + 1]δ(k) + fn

holds for any rapidly decreasing function ϕ ∈ S, where δ is the delta distribution in the
origin and M [f ; k +1] denotes de Mellin transform of f(t):

∫ ∞
0 tkf(t)dt, or its analytic

continuation.
Proof. It is a trivial generalization of [[18], chap 6, lemma 1] from real to complex
values of s. 2

Lemma 2. For ℜs = 1, n ≥ K + 1 and n ∈ N| , the identity

f =

n−1
∑

k=K

akt
−k−s +

n−1
∑

k=0

bk+1δ
(k) + fn,

4



holds for any rapidly decreasing function ϕ ∈ S, where, for n = 0, 1, 2, . . .,

bn+1 ≡(−1)n

n!

[

∫ 1

0
tnfn(t)dt +

∫ ∞

1
tnfn+1(t)dt + an

n+1
∑

k=1

(n − k + 2)k−1

(n + s − k)k

]

(10)

=
(−1)n

n!

{

M [f ; n + 1] +
an

1 − s
+ an

n+1
∑

k=1

(n − k + 2)k−1

(n + s − k)k

}

(11)

if ℑs 6= 0 or

bn+1 ≡(−1)n

n!

[

∫ 1

0
tnfn(t)dt +

∫ ∞

1
tnfn+1(t)dt + an

n
∑

k=1

1

k

]

(12)

=
(−1)n

n!

{

lim
z→n

[

M [f ; z + 1] +
an

z − n

]

+ an

n
∑

k=1

1

k

}

, (13)

if ℑs = 0.
Proof. Let f0(t) ≡ f(t) − ∑−1

k=K akt
−k−s. Then, for n = 0, 1, 2, . . .,

fn+1(t) = fn(t) − an

tn+s

and

fn+1,n(t) = fn,n(t) − (−1)n an

(s)n

1

ts
.

From this, by integration, it follows that

∫ t

0
fn,n(u)du = fn+1,n+1(t) + (−1)nangn(s, t) + bn+1,

where

gn(s, t) ≡
{

log(t)/n! if ℑs = 0
−t−iℑs/(iℑs)n+1 if ℑs 6= 0

and where we have defined the integration constant

bn+1 ≡ − lim
t→0

[fn+1,n+1(t) + (−1)nangn(s, t)] .

From here, the proof is the same as the proofs of lemma 2 and theorem 2 in [[18], chapter
6] from formulas (2.21) and (2.35) respectively: just replace log t by n!gn(s, t) and dn+1

by bn+1 in those proofs. 2

To apply lemmas 1 and 2 to the integral (7) we choose a specific function in S:

ϕη(t) ≡
e−ηt

(t + z)w
∈ S,

where η > 0 and z /∈ R| − ∪ {0}. We will need also the following lemma.

5



Lemma 3. Let f(t) verify (8). Then, for 0 < ℜs ≤ 1, k = 0, 1, 2, ... and n = 1, 2, 3, . . .,
the following identities hold,

lim
η→0

< f , ϕη >=

∫ ∞

0

f(t)

(t + z)w
dt for ℜ(s + w) + K > 1,

lim
η→0

< δ, ϕ(k)
η >=

(−1)k(w)k

zk+w
,

lim
η→0

< t−s, ϕ(k)
η >=

(−1)kΓ(k + w + s − 1)Γ(1 − s)

Γ(w)zk+w+s−1
for ℜ(s + w) + k > 1, s 6= 1,

lim
η→0

< log(t), ϕ(k+1)
η >=

(−1)k+1

zk+w
(w)k(log(z) − γ − ψ(k + w)) for ℜ(s + w) > 0,

where γ is the Euler constant and ψ the digamma function and

lim
η→0

< fn,n, ϕ(n)
η >= (−1)n(w)n

∫ ∞

0

fn,n(t)

(t + z)n+w
dt for ℜ(s + w) + n > 1.

Proof. It is a trivial generalization of the proofs of [[10], lemma 2] and [[11], lemma 3]
from real to complex values of s and w. 2

With these preparations, we are able now to obtain asymptotic expansions of the
integral (7) for large z. This is achieved in the following theorems.
Theorem 1. Let f(t) a locally integrable function on [0,∞) which satisfies (8) with
0 < ℜs ≤ 1, s 6= 1. Then, for z ∈ C/ \ R| −, z 6= 0, ℜ(s + w) + K > 1 and n = 1, 2, 3, . . .,

∫ ∞

0

f(t)

(t + z)w
dt =

n−1
∑

k=K

(−1)kπakΓ(w + s + k − 1)

Γ(s + k)Γ(w) sin(πs)zw+s+k−1
+

n−1
∑

k=0

(−1)k(w)kMk

zk+w
+ Rn(w; z),

(14)

where

Mk ≡
{

M [f ; k + 1]/k! if ℜs 6= 1
(−1)kbk+1 if ℜs = 1

(15)

and, for k = 0, 1, 2, . . ., the coefficients bk+1 are given by (10), (11) or

bn+1 =
(−1)n

n!

{

lim
T→∞

[

∫ T

0
tnf(t)dt +

n
∑

k=K

akT
n−k

k − n + s − 1

]

+

an

1 − s
+ an

n+1
∑

k=1

(n − k + 2)k−1

(n + s − k)k

}

.

(16)

6



The remainder term satisfies

Rn(w; z) ≡ (w)n

∫ ∞

0

fn,n(t)dt

(t + z)n+w
, (17)

empty sums must be understood as zero and fn,n(t) is defined in (9).
Proof. For ℜs 6= 1 it follows from lemmas 1 and 3 using the reflection formula of the
gamma function. For ℜs = 1, from lemmas 2 and 3 we obtain immediately formulas
(14) and (15), but with bk+1 given in formulas (10) or (11). Introducing

fn(t) = f(t) −
n−1
∑

k=K

ak

tk+s
(18)

in the integrands on the right hand side of (10) and after simple manipulations we obtain
(16). 2

Theorem 2. Let f(t) a locally integrable function on [0,∞) which satisfies (8) with
s = 1. Then, for z ∈ C/ \ R| −, z 6= 0, ℜw + K > 0 and n = 1, 2, 3, . . .,

∫ ∞

0

f(t)

(t + z)w
dt =

−1
∑

k=K

ak
Γ(w + k)Γ(−k)

Γ(w)zw+k
+

n−1
∑

k=0

[

ak
(−1)k(w)k

k!zk+w
(log(z) − γ − ψ(k + w)) + bk+1

(w)k

zk+w

]

+Rn(w; z),

(19)

where, for k = 0, 1, 2, ..., the coefficients bk+1 are given by (12), (13) or

bn+1 =
(−1)n

n!

{

lim
T→∞

[

∫ T

0
tnf(t)dt +

n−1
∑

k=K

akT
n−k

k − n
− an log(T )

]

+ an

n
∑

k=1

1

k

}

, (20)

empty sums being understood as zero. The remainder term Rn(w; z) is given in (17).
Proof. From lemmas 2 and 3 we obtain immediately formulas (17) and (19), but with
bk+1 given in formulas (12) or (13). Introducing (18) (with s = 1) in the integrands on
the right hand side of (12) and after simple manipulations we obtain (20). 2

2.2 Error bounds

In the following theorem we show that the expansions (14) and (19) given in theorems
1-2 respectively are in fact asymptotic expansions for large z.
Theorem 3. In the region of validity of the expansions (14) and (19), the remainder
term Rn(w; z) in these expansions verify,

|Rn(w; z)| ≤ Cn

|z|n+ℜs+ℜw−1
(21)
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if 0 < ℜs < 1 and

|Rn(w; z)| ≤ Cn log |z|
|z|n+ℜw

(22)

if ℜs = 1, where the constants Cn are independent of |z| (it may depend on the remaining
parameters of the problem).
Proof. On the one hand, fn(t) = O(t−n−s) for t → ∞ (with 0 < ℜs ≤ 1) then,
there is a certain t0 ∈ (0,∞) and a constant C1,n such that |fn(t)| ≤ C1,nt−n−ℜs ∀
t ∈ [t0,∞). Then, introducing this bound in the definition (9) of fn,n(t) we obtain the
bound |fn,n(t)| ≤ C2,nt−ℜs ∀ t ∈ [t0,∞), where C2,n is a certain positive constant. On
the other hand, fn,n(t) is bounded on any compact interval in [0,∞) for s 6= 1 and
fn,n(t) is bounded on any compact interval in (0,∞) and O(log t) as t → 0+ for s = 1.
Then, ∀ t ∈ [0, t0], |fn,n(t)| ≤ C3,nt−ℜs for 0 < ℜs < 1 and |fn,n(t)| ≤ C3,n(| log t| + 1)
for ℜs = 1, where C3,n is a certain positive constant.

If we divide the integration interval [0,∞) in the definition (17) of Rn(w; z) at the
point t0 and introduce these bounds in each of one of the intervals [0, t0] and [t0,∞),
we obtain the bounds (21) and (22). 2

The bounds (21) and (22) are not useful for numerical computations unless we are
able to calculate the constants Cn in terms of the dates of the problem (w, Arg(z) and
f(t)). The following two propositions show that, if the bound |fn(t)| ≤ C1,nt−n−ℜs

holds ∀ t ∈ [0,∞) and not only for t ∈ [t0,∞) then, the constants Cn may be calculated
in terms of C1,n.
Proposition 1. If, for 0 < ℜs < 1, the remainder fn(t) in the expansion (8) of
the function f(t) satisfies the bound |fn(t)| ≤ cnt−n−ℜs ∀ t ∈ [0,∞) for some positive
constant cn then, the remainder Rn(w; z) in the expansions (14) and (19) satisfies

|Rn(w; z)| ≤ cnπ(|w|)nΓ(n + ℜw + ℜs − 1)h(z, w)

Γ(n + ℜs)Γ(n + ℜw)| sin(πℜs)||z|n+ℜw+ℜs−1
×

F

(

1 −ℜs, n + ℜs + ℜw − 1
(n + ℜw + 1)/2

∣

∣

∣

∣

sin2

(

Arg(z)

2

))

,

where

h(z, w) ≡
{

1 if Arg(z)ℑw ≥ 0
e|Arg(z)ℑw| if Arg(z)ℑw < 0

(23)

Proof. Introducing the bound |fn(t)| ≤ cnt−n−ℜs in the definition (9) of fn,n(t) we
obtain

|fn,n(t)| ≤ cnΓ(ℜs)

Γ(n + ℜs)tℜs
∀ t ∈ [0,∞).

Introducing this bound in the definition (17) of Rn(w; z) and using the duplication
formula of the gamma function and [[14], p. 309, eq. 7] we obtain the wished result. 2

Proposition 2. If, for ℜs = 1, each remainder fn(t) in the expansion (8) of the function
f(t) satisfies the bound |fn(t)| ≤ cnt−n−1 ∀ t ∈ [0,∞) for some positive constant cn then,

8



the remainder Rn(w; z) in the expansion (19) satisfies

|Rn(w; z)| ≤ c̄nπ(|w|)nΓ(n + ℜw − 1/2)h(z, w)

Γ(n + 1/2)Γ(n + ℜw)|z|n+ℜw−1/2
×

F

(

1/2, n + ℜw − 1/2
(n + ℜw + 1)/2

∣

∣

∣

∣

sin2

(

Arg(z)

2

))

,

(24)

where h(z, w) is defined in (23) and c̄n ≡Max{cn, cn−1 + |an−1|}, and

|Rn(w; z)| ≤ (|w|)n

|z|n+ℜw

{

ǫ(cn−1 + |an−1|) + cn

(n − 1)!Θǫ(z)n+ℜw
+

cn

n!

∣

∣

∣
1 +

ǫ

z

∣

∣

∣

−n−ℜw
[

log |z|+

(n + ℜw)[(2ǫ + ℜz + |ℜz|)(|z|−1 − 1) + (|ℜz| − ℜz) log |z|]
2(n + ℜw + 1)|z + ǫ| F1+

4ǫ + ℜz + |ℜz| − 2ǫ|z|
2ǫ(n + ℜw + 1)|z| F0 +

2|ǫ + z|F−1

ǫ((n + ℜw)2 − 1)|z|

]}

h(z, w),

(25)

where ǫ is an arbitrary positive number,

Fk ≡ F

(

2 − k, n + ℜw + k
(n + ℜw + 3)/2

∣

∣

∣

∣

sin2

(

Arg(z + ǫ)

2

))

(26)

and

Θǫ(z) ≡







1 if ℜz ≥ 0
| sin(Arg(z)| if ǫ ≥ −ℜz > 0.
|1 + ǫ/z| if −ℜz > ǫ > 0.

(27)

For large z and fixed n, the optimum value for ǫ is given approximately by

ǫ2 =
cn

n(cn−1 + |an−1|)

[

2F−1

(n + ℜw)2 − 1
+

(ℜz + |ℜz|)F0

2(n + ℜw + 1)|z|

]

. (28)

Proof. From |fn−1(t)| ≤ cn−1t
−n ∀ t ∈ [0,∞) and fn(t) = fn−1(t) − an−1t

−n we
obtain |fn(t)| ≤ (cn−1 + |an−1|)t−n ∀ t ∈ [0,∞). For obtaining the bound (25) we
divide the integral defining fn,n(t) in (9) by a fixed point u = ǫ ≥ t and use the bound
|fn(t)| ≤ (cn−1 + |an−1|)t−n in the integral over [t, ǫ] and the bound |fn(t)| ≤ cnt−n−1

in the integral over [ǫ,∞). Using u − t ≤ u in the integral over [t, ǫ] we obtain

|fn,n(t)| ≤ 1

(n − 1)!

[

(cn−1 + |an−1|) log
(ǫ

t

)

+
cn

ǫ

]

∀ t ∈ [0, ǫ], ǫ > 0. (29)

On the other hand, ∀ t ∈ [0,∞) we introduce the bound |fn(t)| ≤ cnt−n−1 in the integral
definition of fn,n(t) and perform the change of variable u = tv. We obtain

|fn,n(t)| ≤ cn

n!

1

t
∀ t ∈ [0,∞). (30)
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We divide the integral in the right hand side of (17) at the point t = ǫ and use the
bound (30) in the integral over [ǫ,∞) and the bound (29) in the integral over [0, ǫ]. We
obtain

|Rn(w; z)| ≤ (|w|)n

n!

[

cn

∫ ∞

1

dt

t|ǫt + z|n+ℜw
+ ncn

∫ 1

0

dt

|ǫt + z|n+ℜw
+

nǫ(cn−1 + |an−1|)
∫ 1

0

log(t−1)dt

|ǫt + z|n+ℜw

]

h(z, w).

(31)

Removing a factor |z|n+ℜw from the denominator in the integrand of the two last inte-
grals in the right hand side of (31) and using the bound |ǫt/z + 1| ≥ Θǫ(z) we easily
obtain that those two integrals are bounded by (|z|Θǫ(z))−n−ℜw. On the other hand,
we perform the change of variable t → |z|t in the first integral in the right hand side of
(31) and integrate by parts obtaining

|z|n+ℜw

∫ ∞

1

dt

t|ǫt + z|n+ℜw
=

log |z|
|1 + ǫ/z|n+ℜw

+

ǫ(n + ℜw)

∫ ∞

|z|−1

(ǫt + cos(Arg(z))) log tdt

[(ǫt + cos(Arg(z)))2 + sin2(Arg(z))](n+ℜw)/2+1
.

Now, with the change of variable t → t/ǫ+ |z|−1 and using − log |z| ≤ log(t/ǫ+ |z|−1) ≤
t/ǫ + |z|−1 − 1 ∀ t ∈ [0,∞) and [[14], p. 309, eq. 7] we obtain (25).

For obtaining (24) we use |fn(t)| ≤ cnt−n−1 and |fn(t)| ≤ (cn−1 + |an−1|)t−n. Then,
we have fn(t) ≤ cnt−n−1/2 if t ≥ 1 and fn(t) ≤ (cn−1+|an−1|)t−n−1/2 if t ≤ 1. Therefore,
fn(t) ≤ c̄nt−n−1/2 ∀ t ∈ [0,∞). Then, fn(t) satisfies the bound required in proposition
1 with ℜs = 1/2 and cn replaced by c̄n. Applying now proposition 1 we obtain (24).

If we get rid of irrelevant terms for large z, the right hand side of (25), as function
of ǫ, has a minimum for ǫ given in (28).

2

The following two lemmas introduce two families of functions f(t) which verify the
bound |fn(t)| ≤ cnt−n−ℜs ∀ t ∈ [0,∞). Moreover, for these functions f(t), the constants
cn can be easily obtained from f(t).
Lemma 4. Suppose f(t) verifies (8) with ℜs > 0 and K = 0 and consider the function
g(u) ≡ u−sf(u−1). If g(w) is a bounded analytic function in the region W of the complex
w−plane comprised by the points situated at a distance < σ from the positive real axis
(see fig. 1), then,

|fn(t)| ≤ Cr−nt−n−ℜs,

where C is a bound of |g(w)| in W and 0 < r < σ.
Proof. From the asymptotic expansion (8) and the Lagrange formula for the remainder
in the Taylor expansion of g(u) at u = 0, we have

g(u) =

n−1
∑

k=0

aku
k + Rn(u),

10



where

Rn(u) =
1

n!

dng(u)

dun

∣

∣

∣

∣

u=ξ

un, ξ ∈ (0, u).

Using the Cauchy formula for the derivative of an analytic function,

dng(u)

dun
=

n!

2πi

∫

C

g(w)

(w − ξ)n+1
dw,

where C is a circle of radius r around ξ contained into the region W . Then, for fixed ξ
and r, performing the change of variable w = ξ + reiθ, and using |g(ξ + reiθ)| ≤ C for
θ ∈ [0, 2π) with C independent of θ, r and ξ, we obtain the wished result. 2

Im(w)

Re(w)

r

u(u)

σσ
ξ

Figure 1: Analyticity region W for the function g(u) considered in lemma 5. The
integration variable u in (9) is real and unbounded and therefore, the analyticity region
for g(u) must contain the positive real axis. The circle of radius r centered at ξ(u),
with 0 < ξ(u) < u, used in the proof of lemma 5 must be contained in this region and
therefore, r < σ.

Lemma 5. If the expansion (8) verifies the error test, then

|fn(t)| ≤ |an|t−n−ℜs and |fn(t)| ≤ |an−1|t−(n−1)−ℜs.

Proof. A proof of the first inequality can be found in [[12], p. 68]. The second inequality
follows from the first one, from sign(fn(t)) 6= sign(fn−1(t)) and

fn(t) = fn−1(t) −
an−1

tn−1+s
.

2

Corollary 1. If f(t) verifies the hypotheses of lemma 5, then Rn(w; z) satisfies the
bounds given in propositions 1 and 2 with cn = Cr−n. Moreover, the expansions given
in theorems 1 and 2 are convergent when the parameter |z| is longer than the inverse
of the width of the region considered in lemma 4 (see figure 1), more precisely, when
r|z| ≥ 1 if ℜw < 1 or r|z| > 1 if ℜw ≥ 1.
For ℜs = 1, the convergence of these expansions requires also limn→∞ nw−1anz−n = 0.

11



Corollary 2. If the expansion (8) of f(t) verifies the error test, then Rn(w; z) satisfies
the bounds given in propositions 1 and 2 replacing cn by |an| and cn−1 by 0. Moreover,
the expansions given in theorems 1 and 2 are convergent when the coefficients an in the
asymptotic expansion (8) verify limn→∞ nw−1anz−n = 0.

3 Asymptotic expansions of the Epstein-Hubbell integral

In order to obtain asymptotic expansions of the generalized Epstein-Hubbell integral
(2) for k → 1 we just apply theorems 1 and 2 to the integral (3). Error bounds for the
remainders are obtained from corollaries 1 and 2.
Corollary 3. For ℜα, ℜβ > 0, ρ− 1 /∈ R| + ∪{0} if ℜλ ≥ 1, δ +1 /∈ R| − ∪{0} if ℜγ ≥ 1,
β − µ + 1/2 /∈ Z/ and |Arg(k̄)| < π,

(1 + δ)γ(1 − k2)µ+1/2Λ
(α,β)
(λ,γ,µ)(ρ, δ; k) =

n−1
∑

m=0

Γ(m + µ + 1/2)

Γ(µ + 1/2)

(−1)mBm

k̄m+µ+1/2
+

n−M−1
∑

m=0

(−1)mπΓ(m + β)

Γ(µ + 1/2)Γ(m + β − µ + 1/2) sin(π(β − µ + 1/2))

Am

k̄m+β
+ Rn(k̄),

(32)

where k̄ is defined in (4), M ≡ ⌊ℜ(β − µ + 1
2)⌋ and the coefficients Am are defined in

(6). Coefficients Bm are given by

Bm ≡
{

M [F ;m+1]
m! if ℜ

(

β − µ + 1
2

)

/∈ Z/

M [F ;m+1]
m! +

Am−M

m!

[

1
1−κ +

∑m+1
j=1

(m−j+2)j−1

(m+κ−j)j

]

if ℜ
(

β − µ + 1
2

)

∈ Z/,

where κ ≡ Fr
(

ℜ
(

β − µ + 1
2

))

+ iℑ
(

β − µ + 1
2

)

and

M [F ; m + 1] =
B(β − m − µ − 1

2 , m + α)

ρ̄λδ̄γ
F1

(

α + m, λ, γ

α + β − µ − 1
2

∣

∣

∣

∣

ρ̄ − 1

ρ̄
,
δ̄ − 1

δ̄

)

. (33)

Here, F1

(

a,b,c
d |x, y

)

is the Appell hypergeometric function of two variables [[14], p. 789]

and the parameters ρ̄ and δ̄ are given in (4).
If ℜ(β − µ + 1/2) /∈ Z/ and n ≥ M , a bound for the remainder is given by

|Rn(k̄)| ≤ cnπ(|µ + 1/2|)nΓ(n + ℜ(µ + κ) − 1/2)h(k̄, µ)

Γ(n + ℜκ)Γ(n + ℜµ + 1/2)| sin(πℜκ)||k̄|n−M+ℜβ
×

F

(

1 −ℜκ, n + ℜκ + ℜµ − 1/2
(n + ℜµ + 3/2)/2

∣

∣

∣

∣

sin2

(

Arg(k̄)

2

))

,

(34)

where we can take cn = |An−M | if the following conditions over the parameters hold:

α, β, µ ∈ R| , β + α ≥ λ + γ + µ + 1/2, λ ≥ 0, γ ≥ 0, ρ < 1 and δ > −1. (35)

12



In any case, we can take cn = Cr−n, where

C ≥ Supu∈W

∣

∣

∣
(1 + u)λ+γ+µ−α−β+1/2(1 + ρ̄u)−λ(1 + δ̄u)−γ

∣

∣

∣
, (36)

W is the region considered in lemma 5 for g(u) = uµ−β−1/2F (u−1), and

0 < r < Min
{

1, |ρ̄|−1ξ(λ), |δ̄|−1ξ(γ)
}

, ξ(z) ≡
{

1 if z /∈ Z/− ∪ {0}
+∞ if z ∈ Z/− ∪ {0} (37)

where h(k̄, µ) is given in (23).
On the other hand, if ℜ(β − µ + 1/2) ∈ Z/ and n ≥ M , n ∈ N| , two bounds for the

remainder are given by

|Rn(k̄)| ≤ c̄nπ(|µ + 1/2|)nΓ(n + ℜµ)h(k̄, µ)

Γ(n + 1/2)Γ(n + ℜµ + 1/2)|k̄|n+ℜµ
×

F

(

1/2, n + ℜµ
(n + ℜµ + 3/2)/2

∣

∣

∣

∣

sin2

(

Arg(k̄)

2

))

(38)

and

|Rn(k̄)| ≤ (|µ + 1/2|)n

|k̄|n+ℜµ+1/2

{

ǫ(cn−1 + |An−M−1|) + cn

(n − 1)!Θǫ(k̄)n+ℜµ+1/2
+

cn

n!

∣

∣

∣
1 +

ǫ

k̄

∣

∣

∣

−n−ℜµ−1/2
[

log |k̄|+

(n + ℜµ + 1/2)[(2ǫ + ℜk̄ + |ℜk̄|)(|k̄|−1 − 1) + (|ℜk̄| − ℜk̄) log |k̄|]
2(n + ℜµ + 3/2)|k̄ + ǫ| F1+

4ǫ + ℜk̄ + |ℜk̄| − 2ǫ|k̄|
2ǫ(n + ℜµ + 3/2)|k̄| F0 +

2|ǫ + k̄|F−1

ǫ((n + ℜµ + 1/2)2 − 1)|k̄|

]}

h(k̄, µ).

(39)
In these formulas c̄n =Max{|An−M |, |An−M−1|} with cn = |An−M | and cn−1 = 0 if
conditions (35) hold. In any case, we can take c̄n =Max{cn, cn−1 + |An−M−1|}, with
cn = Cr−n given above. In (39), ǫ is an arbitrary positive number, Θǫ(z) is given in
(27) and Fk is given in (26) setting w = µ + 1/2 and z = k̄. For large k̄ and fixed n,
the optimum value for ǫ is given approximately by (28) setting z = k̄ and w = µ + 1/2.
Moreover, the expansion (32) is convergent when Max{|ρ̄|ξ(λ)−1, |δ̄|ξ(γ)−1, 1} < k̄.
Proof. For obtaining the expansion (32), just apply theorem 1 to the integral (3) with
f(t) = F (t) given in (4), s = κ, am = Am−M given in (6), z = k̄ and w = µ+1/2. After
the change of variable t = u(1 − u)−1, the mellin transform of F (t) reads

M [F ; k + 1] =
1

ρ̄λδ̄γ

∫ 1

0

uk+α−1

(1 − u)k+µ−β+3/2

(

1 +
1 − ρ̄

ρ̄
u

)−λ (

1 +
1 − δ̄

δ̄
u

)−γ

du.

Then, (33) follows from [[14], p. 306, eq. 5].
If (35) holds, then, by [[10], lemmas 3 and 4], the function F (t) verifies the error

test. Therefore, by corollary 2, the remainder in the expansion (32) verifies the bounds
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given in propositions 1 and 2 with cn = |An−M |, cn−1 = 0. In any case, by lemma 5 and
corollary 1, the remainder in the expansion (32) verifies the bounds given in propositions
1 and 2 with cn = Cr−n, C and r verifying (36) and (37) respectively. Therefore, the
bounds (34), (38) and (39) hold.

Introducing (37) and

|An| ≤ C

∣

∣

∣

∣

(

µ − β − α + 1/2
n

)∣

∣

∣

∣

[

Max
{

1, |ρ̄|ξ(λ)−1, |δ̄|ξ(γ)−1
}]n

,

where C is a constant independent on n, in (34) and (38) we obtain that limn→∞ Rn(k̄) =
0 if Max{|ρ̄|ξ(λ)−1, |δ̄|ξ(γ)−1, 1} < k̄. 2

Tables 1, 2 and 3 show numerical experiments about the approximation supplied by
(32) and the accuracy of bounds (34), (38) and (39).

Parameter values:
α = 1.7, β = 0.55, γ = 0.5, λ = 0.25, µ = 0.73, ρ = 0.4, δ = 0.001.

First or. Relative Relative Second or. Relative Relative

k Λ approx. error er. bound approx. error er. bound

0.5 1.12759 -0.09105 1.08 1.5 0.32218 0.714 0.979

0.7 0.91954 0.36985 0.598 0.77 0.713 0.225 0.287

0.9 0.56255 0.464 0.175 0.202 0.551 0.02 0.023

0.95 0.40385 0.36992 0.084 0.092 0.40195 0.0047 0.0052

0.99 0.17873 0.17585 0.0161 0.0167 0.1787 1.76e-4 1.82e-4

0.999 5.22502e-2 5.21673e-2 1.59e-3 1.6e-3 5.22501e-2 1.73e-6 1.74e-6

0.9999 1.48615e-2 1.486e-2 1.581e-4 1.584e-4 1.48615e-2 1.705e-8 1.725e-8

Table 1: Second, third and sixth columns represent the integral Λ
(α,β)
(λ,γ,µ)(ρ, δ; k), approx-

imation (32) for n = 2 and for n = 3 respectively. Fourth and seventh columns represent
the respective relative errors, and fifth and last columns are the respective relative error
bounds given by (34).
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Parameter values:
α = 1.5, β = 0.7, γ = 0, λ = 0.2i, µ = 0.25 + 0.5i, ρ = 0.1, δ = 0.1.

First or. Relative Relative Second or. Relative Relative

k Λ approx. error er. bound approx. error er. bound

0.5 0.91077 0.35393 0.628 9.321 0.55577 0.406 5.886

-0.07139i -0.20978i -0.18143i

0.7 0.75508 0.47979 0.361 4.275 0.65421 0.133 1.54

-0.13542i -0.16594i -0.15206i

0.9 0.44459 0.39137 0.111 0.910 0.43854 0.012 0.1

-0.18898i -0.17996i -0.18824i

0.95 0.29432 0.27654 0.054 0.377 0.29333 0.003 0.0203

-0.17831i -0.17213i -0.17801i

0.99 0.08844 0.08731 0.0107 0.059 0.08842 1.15e-4 6.24e-4

-0.10594i -0.10497i -0.10593i

0.999 6.94e-3 6.929e-3 1.06e-3 5.67e-3 6.94e-2 1.13e-6 5.96e-6

-0.02761i -0.02759i -0.02761i

0.9999 -4.5655e-4 -4.5654e-4 1.043e-4 7.453e-4 4.5655e-4 1.108e-8 7.845e-8

-4.2913e-3i -4.2909e-3i -4.2913e-3i

Table 2: Second, third and sixth columns represent the integral Λ
(α,β)
(λ,γ,µ)(ρ, δ; k), approx-

imation (32) for n = 2 and for n = 3 respectively. Fourth and seventh columns represent
the respective relative errors, and fifth and last columns are the respective relative error
bounds given by (34).
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Parameter values:
α = 0.7, β = 0.5, γ = 0.1 + 0.2i, λ = 0.2, µ = i, ρ = 0.01, δ = 0.01.

First or. Relative Relative Second or. Relative Relative

k Λ approx. error er. bound approx. error er. bound

0.5 2.16114 1.61551 0.247 2.426 1.95664 0.092 1.528

-0.47149i -0.4415i -0.47183i

0.6 1.95106 1.54907 0.198 2.048 1.83023 0.059 1.012

-0.64402i -0.57396i -0.63062i

0.7 1.65145 1.39146 0.149 1.664 1.59233 0.033 0.598

-0.81032i -0.72221i -0.79503i

0.8 1.22241 1.09061 0.1 1.27 1.2013 0.015 0.295

-0.92728i -0.84789i -0.91728i

0.9 0.5961 0.56193 0.0523 0.891 0.59227 0.005 0.098

-0.8679i -0.8247i -0.8643i

0.95 0.1928 0.18734 0.028 0.6983 0.19247 0.002 0.037

-0.62804i -0.61026i -0.6265i

Table 3: Second, third and sixth columns represent the integral Λ
(α,β)
(λ,γ,µ)(ρ, δ; k), approx-

imation (32) for n = 2 and for n = 3 respectively. Fourth and seventh columns represent
the respective relative errors, and fifth and last columns are the respective relative error
bounds given by Min{(38),(39)}.

Corollary 4. For ℜα, ℜβ > 0, ρ− 1 /∈ R| + ∪{0} if ℜλ ≥ 1, δ +1 /∈ R| − ∪{0} if ℜγ ≥ 1,
β − µ + 1/2 ∈ Z/ and |Arg(k̄)| < π,

(1 + δ)γ(1 − k2)µ+1/2Λ
(α,β)
(λ,γ,µ)(ρ, δ; k) =

µ−β−1/2
∑

m=0

Am
Γ(m + β)Γ(µ − β − m + 1/2)

Γ(µ + 1/2)k̄m+β
+

n−1
∑

m=0

(−1)m(µ + 1/2)m

m!k̄m+µ+1/2

[

Am+µ−β+1/2(log(k̄) − γ − ψ(m + µ + 1/2)) + Bm

]

+ Rn(k̄),

(40)
where the coefficients Am are given in (6) and the coefficients Bm are given by
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Bm ≡ Am+µ−β+1/2

m
∑

k=1

1

k
+

(−1)m+µ−β−1/2Γ(m + α)

Γ(β + α − µ − 1/2)(m + µ − β + 1/2)!ρ̄λδ̄γ
×

{

[ψ(m + α) − ψ(m + µ − β + 3/2)] F1

(

m + α, λ, γ

α + β − µ − 1/2

∣

∣

∣

∣

ρ̄ − 1

ρ̄
,
δ̄ − 1

δ̄

)

+

F ′
1

(

m + α, λ, γ

α + β − µ − 1/2

∣

∣

∣

∣

ρ̄ − 1

ρ̄
,
δ̄ − 1

δ̄

)

}

,

(41)

where F ′
1

(

a,b,c
d

∣

∣

∣
x, y

)

denotes the derivative of the Appell hypergeometric function with

respect to the parameter a.
For n ≥ β − µ − 1/2 and n ∈ N| , two bounds for the remainder are given by (38)

and (39) in corollary 3 replacing M by β−µ− 1/2 in An−M . And again, the expansion
(40) is convergent if Max{|ρ̄|ξ(λ)−1, |δ̄|ξ(γ)−1, 1} < k̄, where ξ(z) is defined in (37).
Proof. For obtaining the expansion (40), just apply theorem 2 to the integral (3) with
f(t) = F (t) given in (4), s = 1, am = Am+µ+1/2−β , z = k̄ and w = µ + 1/2.

On the other hand, the coefficients Am in the expansion (5) of F (t) may be written

Am =
1

m!

dm

dtm

[

tµ−β−1/2F (t−1)
]

t=0
.

Using the Cauchy formula for the derivative of an analytic function, we obtain

Am+µ+1/2−β =
dm+µ+1/2−β

dtm+µ+1/2−β

[

tm(1 − t)µ−β−1/2

(m + µ + 1/2 − β)!
F

(

t

1 − t

)

]

t=1

. (42)

The coefficient Bn in (40) is just bn+1 given by (13) with an = An+µ+1/2−β . The
Mellin transform in this formula is given by (33). When z → n, there are two singular
terms in this limit: An+µ+1/2−β/(z −n) and B(β − z −µ− 1

2 , z +α). Setting z = n+ η,
expanding these terms at η = 0 and using (42) we obtain (41).
The bounds (38) and (39) are obtained as in corollary 3 (using only proposition 2). 2

Table 4 shows a numerical experiment about the approximation supplied by (40)
and the accuracy of bounds (38) and (39).
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Parameter values:
α = 1, β = 2, γ = 0.01, λ = 0.1, µ = 1.5, ρ = 0.1, δ = 0.01.

First or. Relative Relative Second or. Relative Relative

k Λ approx. error er. bound approx. error er. bound

0.9 0.01878 0.01393 0.258 0.887 0.01802 0.04 0.154

0.95 0.00592 0.0052 0.121 0.468 0.00587 0.009 0.04

0.99 0.0003731 0.000365 0.022 0.127 0.00037298 2.4e-4 2.1e-3

0.999 5.9363e-6 5.9236e-6 2.14e-3 2.5e-2 5.9363e-6 3.72e-6 4.1e-5

0.9999 8.22324e-8 8.2215e-8 2.1e-4 5.7e-3 8.22325e-8 5.82e-7 9.36e-7

Table 4: Second, third and sixth columns represent the integral Λ
(α,β)
(λ,γ,µ)(ρ, δ; k), approx-

imation (40) for n = 2 and n = 3 respectively. Fourth and seventh columns represent
the respective relative error, and fifth and last columns are the respective relative error
bounds given by min{(38),(39)}.

4 Conclusions

Asymptotic expansions of generalized Stieltjes transforms of complex valued functions
have been derived in section 2, including error bounds. They extend to the complex case
the known methods given in [17], [[18], chap. 6], [10], [11] for real functions. Using these
methods we have derived two expansions with error bounds of the generalized Epstein-
Hubbell integral (2) in corollaries 3 and 4. Moreover, these expansions are convergent
when the asymptotic variable is greater than the remaining ones. The convergence
rate increases as the difference between the asymptotic variable and the remaining ones
increases. When the parameters defining the function F (t) in the integrand of the
Epstein-Hubbell integral (3) verify conditions given in (35), then, F (t) belongs to a
special kind of functions: the remainder term in its asymptotic expansion in inverse
powers of t satisfies the error test. This fundamental property let us to use corollary 2
for deriving a more accurate error bound for the remainder in the asymptotic expansions
of the Epstein-Hubbell integral given in corollaries 3 and 4. These bounds have been
obtained from the error test and, as numerical computations show (see tables 1 and 4),
they exhibit a remarkable accuracy.

Expansions given in corollaries 3 and 4 constitute a simple form of the asymptotic

formula for Λ
(α,β)
(λ,γ,µ)(ρ, δ; k) derived by Kalla and Tuan [8]. Apart from the simplicity of

the expansion, the approach presented here supplies a simple algorithm for the calcu-
lation of the coefficients of these expansions and accurate error bounds at any order of
the approximation.

Distributional approach should succeed for deriving complete uniform asymptotic
expansions of Epstein-Hubbell integrals too. This challenge is postponed for further
investigations.
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