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ABSTRACT

Symmetric standard elliptic integrals are considered when two or three of their variables
are large without any prescribed asymptotic relation between them. The analytic
continuation method is used for deriving seven expansions of these integrals in inverse
powers of the asymptotic parameters. These expansions are uniformly convergent when
the asymptotic parameters are greater than the remaining ones. All of the expansions
are accompanied by an error bound at any order of the approximation.
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1. Introduction

Elliptic integrals (EI) are integrals of the type [ R(z,y)dz, where R(z,y) is a rational
function of 2 and y, with y? a polynomial of the third or fourth degree in z. Legendre
showed that all EI can be expressed in terms of three standard EI (Legendre’s normal
EI) [5].

A survey of properties of the standard EI can be found, for example, in [[10], chap.
12]. However, as it has been shown by Carlson and Gustafson [1], [4], for numerical
computations it is more convenient to use symmetric standard EI instead of Legendre’s
normal EI. (They are connected by means of simple formulas [[10], eq. 12.33].) They
are defined as follows:
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where we assume that the parameters z, y, z are nonnegative, distinct and we will
consider p > 0 and p # z, y, 2.

Asymptotic expansions of EI have been investigated by Carlson, Gustafson, Wong
and Lépez [1], [4], [6], [7], [[12], chap.6], using either Mellin transform techniques or
the distributional approach [[12], chaps. 3,6]. In particular, [6] and [7] contain a very
complete information about the 12 different possible expansions (with error bounds) of
R:, R, and R; considering one, two or three large parameters. But in these expansions,
when two or three parameters are large, they go to infinity at the same speed: for
example, [7] considers asymptotic expansions of Ry(z,az,z) for large x and fixed a
and z. In this paper we try to solve the problem of finding asymptotic expansions of
those integrals when two or three parameters go to infinity at arbitrary speeds. For
example, we consider asymptotic expansions of Ry (z,y, z) for large = and y and fixed z
without restricting ourselves to the case y = ax with fixed a. We face the challenge of
obtaining easy algorithms for computing the coefficients of these expansions and simple
expressions for the error bounds at any order of the approximation.

To this end we use the method of analytic continuation introduced in [11] and
developed in [2], [3] and [8]. As well as we did in [6] or [7], we use the error test
for finding error bounds but, in this paper, the analysis of the error bound is based on
a different representation of the error term which offers a higher precision.

2. The method of analytic continuation
In this section, we resume some definitions and theorems proved in [2], [8]. We
denote hy(t) = h(t,vt) and hy (t) = h(t, vt, wt).

Definition 1. We denote by H, a5 the set of functions h, € Li .(0,00) uniformly for
v € [0, 1] verifying:

(i) hy has an asymptotic expansion at t = 0 uniformly valid for v € [0,1]:
n—1
ho(t) =) Ap()tF* 4 hy(t,0t), n=1,2,3,.., a€R,
k=0
where {A(v)} is a sequence of complex numbers uniformly bounded for v € [0,1] and
hn(t,vt) = O™~ ) when t — 0% uniformly in v € [0, 1].
(ii) hy(t) = O(t=P) when t — oo for some 3 € R uniformly in v € [0,1].

Definition 2. We denote by Hy a5 the set of functions hy., € Lt (0,00) uniformly
for 0 <w < v <1 verifying:
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(1) hyw has an asymptotic expansion at t = 0 uniformly valid for 0 < w < v < 1:
n—1

how(t) =Y A, w)t* = + hy(tot,wt), n=1,23,.., acR,
k=0
where { A (v, w)} is a sequence of complex numbers uniformly bounded for 0 < w < v <

1 and hy(t,vt,wt) = O™~ *) when t — 07 uniformly in 0 <w < v < 1.
(13) Py (t) = O(tP) when t — oo for some B € R uniformly in 0 <w < v < 1.
Definition 3. We denote by Fy o the set of functions f € Lt (0, 00) verifying:
(i) f has an asymptotic expansion at infinity:

f(t) = nZlBkt—’“—” + fult), n=1,2,3,..., beR,

k=0

where {By} is a sequence of complex numbers and f,(t) = O(t~""?) when t — oco.
(ii) f(t) = O(t=*) when t — 0% for some a € R.

We require for the parameters a, b, « and 3 to satisfy the following conditions [8]:
CONDITIONL a+a<1<b+p CONDITION II: a < b and a < (5.

Let f € Fo.a, ho € Hua8, [ € Fo,ar Pow € How,a,p and 0 <w < v < wu. Then, for
any n = 1,2,3, ..., the following theorems hold:

Theorem 1. Fora+b¢ Z and m =n+ |a+ b,

1

3
|

/ h(ut,vt) f(t)dt = BpM{[hy ;1 — k — bluFto—14
0

]
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with [ fo()hm (ut, vt)dt = O(u"T0~1) when u — 0.
Theorem 2. Fora+beNandm=n+a+b—1,

00 a+b—2
/ But, o) f(B)dt = 3 Ap(v/u)M[f;k+1— aJut=04
0 k=0
n—1
Z uk"‘b_l{—BkAk-i-a-i-b—l(U/U) log u + lirr(l) [BkM[hU/u; e+1—Fk—0b+
k=0

Asasaa (WM + 8]} + [ f0hn(ut, o0,

(2)
with [ fr(t)hm (ut, vt)dt = O(u" T~ logu) when u — 0F.



Theorem 3. Fora+b¢ Z and m =n+ |a+ b,

o] n—1
/ h(ut,vt,wt) f(t)dt = Z BiM[hy i 1 — k — plur o1y

0 k=0
m—1

Ap(v/u,w/u)M[f;k +1 — au®~® / Fr () By (ut, vt, wt)dt,
(3)

k=0

with [ fr (t)hm (ut, vt, wt)dt = O(u"T*=1) when u — 0T
Theorem 4. Fora+beNand m=n+a+b—1,

/ h(ut, vt,wt) f(t)dt = Z A (v/u,w/u)M[f; k+ 1 — ajuf~*+

0 k=0
n—1
Z uk+b_1{_BkAk+a+bfl(v/u7 w/u) logu + hl% [BkM[hv/u,w/u7 e+1l—Fk-— b]+
k=0

Aptatrv—1(v/u,w/u)M[f;e+k+b]]} + /000 Fr () o (ut, vt, wt)dt,
(4)

with [ fr(t)hm (ut, vt, wt)dt = O(u" =" logu) when u — 0.
3. Uniform and convergent expansions of the symmetric standard EI

Corollary 1. For0<z<z<yandn=1,2,3,...,

k'Ak iL'/y k+1/2
l’ Y,z \/72 |: k‘—|—3/2 l’k+1/2+
D(k+1/2)z F( k—|—1/2 1/2) x)

klzk oy

where

Ap (z/y) = —m”;iﬁr (k + ;) F < ig_‘z i) | (6)

The remainder term Ry, (z,y, z) satisfies

\Rn(x,y,z)\ S (1/2)nznir(k+1/2)r(n_k+1/2)F(1/2,7”6—]43-1-1/2‘1_a?) .

2(71!)2 —~ xkyn—k+1/2 n+1

(7)
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Proof. After the change of variable ¢ — zt, the integral 2\/xy/zRr(x,y,z) has the
form considered in Theorem 1 with u = z/z, v = z/y and

_ 1 k 1 k v
ho(t) = T k§ O: Ap(0)EF + oy (¢, 0t), .
Z —1/2\  _+_1/9

with Ag(v) given in (6). Then a = 0, b = 1/2 and m = n and the asymptotic expansion
of 2¢/xy/zRp(x,y,z) for large x and y (small v and v) follows form eq. (1) with
the coefficients Ax(v/u) and By given by formula (8). On the other hand, the Mellin
transform of f is a beta function, whereas the Mellin transform of h, can be obtained
from [[9], p.303, eq. 24]. Introducing these Mellin transforms in (1) we obtain (5).

Integrating by parts in the integral defining the remainder term in (1) we obtain

2,/ " |Ruv.2)| <
z 0

where [[12], chap. 6, eq. (2.10)] fu..(t) = ((=1)"/(n — 1)1) [ (u—t)""" fo(u)du. Using
1/2
n

Fom(®)ha™ (ut, vt>( dt,

that f verifies the error test [6]: |fn(u)| < u~""1/2 the Leibniz rule for the

derivation of a product of functions and [[9], p.303, eq. 24] we obtain (7). O
Corollary 2. For0<z<y<zandn=1,2,3, ...,

k"A k+1/2
(2,1, 2 k(y/z) x +
,23 T(k + 3/2) yF+1/2

(9)
kz!3/2) F( —k+ 12/2,3/2 ‘ 1 Zﬂ + R,y 2),
where 2 5 Lok | 2
nr =2 (e ) (Y52, a0
Forn=1,2,3,..., the remainder term R, (x,y, z) satisfies
Ro(2.9.2)| < 3(1(/712!;?” kz”:O U'(k+ 1;325_(7;:3/]; +3/2) . < 1/2,nn +I<: +1/2 ‘ 1 g
(11)

Proof. After the change of variable t — xt, the integral 2./yz3 /xR, (z,y, 2)/3 has the
form considered in Theorem 1 with v = x/y, v = x/z, the function f given in (8) and
hy(t) = 1/4/(1 +t)(1 + vt)3. Following the same arguments than in Corollary 1, we
obtain (9) and (11). ]




Corollary 3. For0<z<z<yandn=1,2,3,...,
3 [T | 2k A (/y)2F—1/2
R =——\/—
D($7y7 Z) 2\/; LZ:O F(k + 1/2):Z:k+1/2 +
n—1 k
$ /27 F(—k—lg,l 1_x>
Y

Elpk+1
where, for k = 0,1,2,..., Ax(x/y) are given in (6). For n = 1,2,3, ..., the remainder
term R, (z,y,z) satisfies

(12)
+ Rn(xa Y, Z),

k=0

< 3/2 PLIEES I<:+1/2 n—k—i—3/2) 1/2,n—k+3/2|, =

(13)

| B (2,9, 2)

Proof. After the change of variable ¢ — zt, the integral 2,/zyzR,(x,y,2)/3 has the
form considered in Theorem 1 with u = z/z, v = z/y, the function h, given in (8) and
f(t) =1//(1 +t)3. Following the same arguments from Corollary 1 we obtain (9).

Integrating by parts in the integral defining the remainder term in (1) we obtain
3
2 /Tyz

where [[12], chap. 6, eq. 15] funt1(t) = ((=1)"T'/n!) [7°(uw — )" fn(u)du. Using the
error test for f and the Leibniz rule for the derivation of a product we obtain (13). O

Corollary 4. For0 <z <y<z, 0<pandn=1,2,3,...,

R, (2,9, 2,p) = \[ZBw/x e (—k—11/2,1/2’1_y>

\Rn(x,y,z)| < / ‘fn7n+1(t)hn+l(n+1)(Uta/Ut)) dta (14)
0

z

2klzh+1/2 k+1,1 x
_ZAk' y/Z ]{7+1/2) k+1/2F( 3/2 ’1_p> +Rn($7y7zap)7
(15)
where A (y/z) are given in (6) and
k+1/2 3
P p 1,3/2+ k|«
B, =)= k F ’ — . 16
+(7) A (k+1)|f ( N > < 2+ k p> (16)
Forn =1,2,3,..., the remainder term R, (z,y,z,p) satisfies
3| B, (p/x)| 2™ C= T(k + 1/2) (n—k+3/2)
|Rn(:v,y,z,p)\ é Z n—k+3/2
2(n+1)! — ykz +3/ a7

XF(l/Q,n—k‘%—?)/Q‘l_y).

n—+ 2 z



Proof. After the change of variable t — xt, the integral 2\/yz/zR,(z,y,2,p)/3 has
the form considered in Theorem 1 with u = z/y, v = z/z, the function h, given in (8)
and f(t) = 1/((zt + p)v/1+t). The same arguments than before provide (15) and the
error bound (17). O

Corollary 5. For0<z<p<z, 0<yandn=1,23,...,

Ry (a.y.7.) = fnzl L {Ak<p/z>Bk<y/x>1og( ) ﬁAk@/zv

I < k+11,1/2’1 B z:) B QBk(y/af}Hi/!{:—i-?)ﬁ) [F, ( _16,1/2‘1 B p)
+ @k +1) =k +3/2) F ( ";)’/12/2 ‘ - i’ﬂ } + Ro(2,9,2,p).

(18)

By are the coefficients Ay of (6) and Ax(p/2) = b f </<;+ 1) F ( 1}’2__kk ;) .

F'(a,b,c,z) represents the derivative of the Gauss hypergeometric function with respect
the variable a. For n =1,2,3, ..., the remainder term R, (x,y, z,p) satisfies

(R, 2,0 <3 (| 401 (2) Ba (2)] + 40 (B) Ein_l 9]+ "
| ()5 (25 (7)) e

Proof. After the change of variable ¢ — xt, the integral QpMRJ(x, y,2,p)/3 has the
form considered in Theorem 2 with u = x/p, v = z/2, hy(t) = 1/(t +1)y/vt + 1 and
t) =1/y/(1+t)(zt +y). Following the same argument than before we obtain (18).

Consider now the integral expression of the remainder given in Theorem 2 for m = n.
Write

1/u
/ Jrn(t)hp (ut, vt)dt = / Frn(t)hp (ut, vt)dt + frn(t)hp (ut, vt)dt+

1
fn (t)hy (ut, vt)dt.
1/u

Perform the Change of variable t — ¢/u in the last integral, introduce the decomposition
fn(t) = fn_1(t) — Bp—1t~" into the first integral in the right hand side and the decom-
position Ay, (t,vt) = hy,_1(t,vt) — A,,_1(v)t" ! into the last integral. Bound (19) follows
using the error test in both functions: |f,(t)| < |B,[t™""! and |h,(t,vt)| < |A,(v)[t".0

Corollary 6. For0<z<y<p<zandn=1,2,3,..,

nol k4172

R,(z,y,2,p) = ;\F k+1/ [k!Ak(y/p’y/Z)
pvz 2 g7 | Tk +3/2)

(- )’“F(k+1/2)pf <y y
klmy/zy B Pz

+

(20)

)] + Ru(2,y,2,p),
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(1 2 1 2 —q
where Ak(y/p,y/z) = Z / b ] /) <z> F<1}’2_‘7j’2>,and the coefficients

Bi(y/p,y/z) verify, for k = 1,2,3,..., the recurrence

e G e N L E I

where Bo(y/p,y/z) = 2R,(1,2/y,0,p/y). For n = 1,2,3,..., the remainder term
R, (x,y,z,p) satisfies

(22)

3(1/2)71 ’A | +1 -1 x"
R,(x,y, < €' +4|A, 4 /2
|Rn(7,y,2,p)| < o (n 1€ | le VT

where € = ]2An,1/An\1/(n+3/2).

Proof. After the change of variable ¢t — xt, the integral 2p\/yz/xR,(z,y, z,p)/3 has
the form considered in Theorem 4 with v = z/y v = z/p, w = z/z, the function f
given in (8) and hy (t) = 1/((vt + 1)/(t + 1)(wt + 1)). Following the same arguments
and, for the Mellin transform, it is straightforward to see that, for £ = 0,1,2, ..., the
following recurrence holds: M [hy 5 —k —1/2] = M[/(t + 1)~ Y(wt + 1)~ 1; —k — 1/2]
VM [hy 45 1/2 — k]. Then, using formula [[9], p.303, eq. 24] and defining Bk(y/p, y/z) =
%\/gM[hy/p,y/z; 1/2 — k], we obtain the recurrence (21) and therefore expansion (20).

Consider now the integral expression of the remainder given in Theorem 4 for m = n.
For € > 0 write

/ Fo(t)h (ut, vt, wit)d / Fal O hat, —t —t )t + — / fn ha(t, %t, %t)dt.

Introduce the decomposition h,, = h,_1 — A,,_1t" ! into the last integral in the right
side above. Bound (22) follows after using the bounds provided by the error test for the
functions h, ,, and f and taking the optimum e. a

Corollary 7. ForO<p<z<y<zandn=1,2,3,..,

k

n—1
3 P D 2./yz 3
R,(x,y,2,p) = Z YD [Ak(a:/y,x/z) log <;> + mf (k: + 2> X
1
2

2w/yz

K Y(k+1) w(m >> <k+g ,;,2;1—1,1—9— (23)

3113 z
Fl/ <k‘—|— 5,5,5,5,1 — g,1 - >:| +Rn(x7yazap)7

where Fy(a,b,c,d;x,y) represents an Appell’s function and F{(a,b,c,d;x,y) its deriva-
tive with respect to the variable a. For k = 0,1,2, ..., the coefficients Ay are given by



1/27_j Y —
1/2—j'z>' Forn =1,2,3,..., the

Lo (® "
2 g P \/?ﬁanrl/Z'

Proof. After the change of variable ¢ — pt, the integral 2,/zyzR,(x,y,2,p)/3 has
the form considered in Theorem 4 with u = p/x, v = p/ly, w = p/z, hyw(t) =
1/4/(t + 1)(wt + 1)(vt + 1) and f(¢) = 1/(1 +t). Expansion (20) follows with the same
argument using (4) and taking into account that the Mellin transform of h, ,, is the
first Appell hypergeometric function of two variables F;. Bound (24) follows using the

Ap(z/y,x/z) =

remainder term Ry, (x,y,

M (1/2)p—;T(j + 1/2) 27
Z% (k= lty/m y”F<

z, p) satisfies

Ro(2,9,20)] < 3 (rAnlr A (1 n (24)

same argument as in Corollary 5 and the error test in both functions.

4. Numerical examples

x Rp(xz,xlogz,1) |1st OrAp ReEr | ReErBo |2nd OrAp ReEr ReErBo
10 0.344184 0.333002 | 0.032 0.04 0.343572 0.0018 0.002
50 0.144162 0.14337 | 0.0055 0.006 0.144154 5.6e-5 5.7e-5
100 0.099046 0.0987863 | 0.0026 | 0.0028 0.0990447 | 1.316e-5 | 1.319e-5
y Rp(1,y,4°)

10 0.00411923 | 0.00396237 | 0.038 0.05| 0.00411154 0.0019 0.002
50 5.37946e-5 5.35581e-5| 0.004 0.005 5.37923e-5 4.2e-5 4.6e-5
100 7.83482¢-6 7.82013e-6 | 0.0019 0.002 7.83475e-6 9.1e-6 9.7e-6
x Rp(z,2zlogx,1)

10 0.100142 0.104209 0.04 0.049 0.100539 0.004 0.0046
50 0.0184569 0.0185161 [ 0.0032 | 0.0034 0.018458 6.3e-5 6.7e-5
100 0.00888594 | 0.00889579 | 0.0011 0.0012 | 0.00888604 | 1.09e-5| 1.13e-5
Yy RJ(L%Z/Q-,Q)

10 0.0509229 0.05478 0.07 0.1 0.051573 0.013 0.017
50 0.00561821 | 0.00565251 | 0.006 0.007 | 0.00561938 0.0002 | 0.00025
100 0.00208589 | 0.00209034 | 0.002| 0.0024 | 0.00208596 3.6e-5 4.e-5
p Ry(1,2,p% p)

10 0.0105996 0.0090172 0.15 0.4 0.0103535 0.02 0.06
50 0.000309006 | 0.000299864 0.03 0.06 | 0.00030872 0.001 0.002
100 6.43773e-5 6.34236e-5 0.01 0.02 6.43622e-5 0.0002 0.0004
y Ry(1,y,y% 2y)

10 0.0134692 0.0124728 0.07 0.1 0.0133997 0.005 0.006
50 0.00065188 | 0.000643092 0.01 0.02| 0.00065176 | 0.00018 0.0002
100 0.000170126 | 0.000168996 | 0.007 0.01 | 0.000170118 4.5e-5 4.9e-5
z | Ry(z,zlogz,z® 1)

10 0.0266916 0.0245712 0.08 0.1 0.02653 0.006 0.01
50 0.0013541 | 0.00133727| 0.012 0.018 | 0.00135386 2.e-4 3.e-4
100 0.000364351 | 0.000362194 | 0.005 0.008 | 0.000364336 4.e-5 7.e-4

Second, third and sixth columns represent the EI function, approximation of corol-
laries 1-7 for n = 1 (1%* OrAp) and n = 2 (2°¢ OrAp) respectively (n =2 and n = 3 in
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the last example). Fourth and seventh columns represent the respective relative errors
(ReEr) |R,,/Rr|. Fifth and last columns represent the respective relative error bounds
(ReErBo) given by the corresponding equation in corollaries 1-7.
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