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ABSTRACT

The double Zeta function of Barnes, Cg(v,z,w), is considered for large and small
values of z and w with w > 0, |Arg(z)| < 7 and v # 1, 2. Two integral representa-
tions are obtained for (2(v, z,w). These integrals define the analytical continuation
of the double Zeta function, primarily defined for (v) > 2 and R(z) > 0, to the
whole complex z—plane and complex v—plane with |Arg(2)| < 7 and v # 1,2. Six
asymptotic expansions for large and small w or z are derived from these integrals.
The expansions are all accompanied by error bounds at any order of the approxima-
tion. Numerical experiments show that these bounds are very accurate for real values
of the variables.
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1. Introduction
The double Zeta function (2(v, z,w) is defined by the double infinite series [4]:
Ca(v, z,w) = Z Z(z +m+nw)”", Re(z) >0, Re(w) >0, Re(v) >2. (1)
m=0n=0
The double Gamma function of Barnes I'y(z,w) introduced in [3] is closely related to

the double Zeta function,

logTa(z,w) = —(a(v, 2, w)

d d
T e - ;13[1) [%CQ(%Z??U) o + logz} .



An important particular case of the function I's(z,w) is the function G(z) =
(2m)#/2T; 1 (2,1) (also called the double Gamma function) introduced in [2] as the infi-
nite product

2 > k 2
Gz + 1) = (2m)7/2e (02422 [(1 + %) et /ﬂ 7
k=1

where 7 is the Euler-Mascheroni constant. It satisfies the recursion relation G(z + 1) =
I'(2)G(z) and, for integer positive z, it verifies G(1) = G(2) = 1 and G(m) = 112!...(m —
3)!(m — 2)! for m > 3.

Barnes introduced these functions, studied many properties and applied them to the
theory of elliptic and theta functions [2]-[4]. Some other mathematical applications of
the double gamma functions may be found in [8], [9], [17] and [18]. The double gamma
functions are used in [17] to prove the classical Kronecker limit formula. On the other
hand, the theory of the double gamma function is used in [8], [9] and [18] to evaluate
some series involving the Riemann zeta function.

A second field of applications is the study of determinants of Laplacians. In fact,
multiple gamma functions evaluated at 1/2 may be expressed in terms of the functional
determinant of Laplacians of the n-sphere, which have been a recent subject of research
due to their relevance to superstring theory [20]. Toeplitz determinants with special
rational generating functions may be evaluated in terms of the double gamma function
and the Gauss hypergeometric function [5]. Several properties of the Gamma and double
gamma functions may be deduced from the application of the zeta regularization to the
determinants of certain operators [21]. The double gamma function plays a key role in
the derivation of the determinant of the Laplacian on spinor fields on a Riemann surface
in terms of the value of Selberg zeta function at the middle of the critical strip [16].
Some other applications of the double gamma function to the study of determinants of
Laplacians may be found in [7],[14] and [15]. For a deep understanding of the important
role that these functions, in particular the double zeta function, play on zeta-function
regularization methods see [10].

Asymptotic expansions of (2(v, z,w), I's(z,w) and G(z) have been investigated,
among other authors, by Matsumoto, Billingham & King and Ferreira & Lopez. Com-
plete asymptotic expansions of (3(v, z,w) and I'y(z,w) in decreasing powers of w are
obtained in [12] and [13] from an integral representation of a generalization of these
functions. These expansions are valid for z, w > 0, 3 —v ¢ N and R(v) > —N for some
fixed N € N. The first terms of the asymptotic expansions of log I's(z, w) for large or
small z or w have been obtained in [6] by using the method of matched asymptotic
expansions to solve the difference equation satisfied by this function. The first terms of
uniform asymptotic expansions are also obtained there. A complete asymptotic expan-
sion of log G(z) with error bounds has been recently obtained in [11] from an integral
representation of log G(z). Several complete convergent expansions of log G(z) in pow-
ers of z are given in [8]. These expansions of log G(z) for large and small z are valid for
|Arg(z)| < 7 and |z| < 1 respectively.
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On the other hand, complete asymptotic expansions of (2(v, z, w) for large and small
z and small w are not known. The purpose of this paper is to obtain complete asymptotic
expansions of (3(v, z,w) in these limits with error bounds. For completeness, we also
investigate asymptotic expansions of (2(v, z, w) for large w. The expansions obtained
here for large w are alternative to Matsumoto’s expansions and are valid in a larger
domain of z and v.

In section 2, we obtain two integral representations of (2(v, z, w) from which, in sec-
tion 3, we derive complete asymptotic expansions of this function in the limits mentioned
above. We use the error test and Cauchy’s integral formula to obtain error bounds at
any order of the approximations. Numerical examples are shown as an illustration in
section 4. A brief summary and a few comments are given in section 5.

2. Analytic continuation of the double zeta function

The starting point to derive asymptotic expansions of (2(v, z, w) is a suitable integral
representation. It may be obtained by substituting

]. _ ]- /OO tv_le_(z+m+nw)tdt
Grmtnw)y T Jo

in definition (1) and interchanging sums and integral,

1 00 tv—le—zt
G20 2w) = 75 /0 A—eDi—c

This integral defines an analytic function of either v, z or w for R(v) > 2, R(w) > 0
and R(z) > 0 [[19], p. 30, theorem 2.3].

We can continue analytically (5(v,z,w) in both, v or z, to larger regions in the
complex plane. For this purpose we consider only positive values of w. In order to
continue (2(v, z, w) to a larger domain in the z—plane we consider an angle ¢ verifying
lp| < 7/2 and |Arg(z) 4+ ¢| < 7/2. Then, using the Cauchy residue theorem we obtain
that, for fixed v with R(v) > 2 and fixed w > 0, the analytic continuation of {2(v, z, w)
in the z variable to {z € €, |Arg(z)| < 7} is given by

1 coe'® tv—le—zt
O T A ere e 2

JFrom this integral, a straightforward computation shows that, for fixed z € ¢\R™,
the analytical continuation of (3(v,z,w) in the complex v plane to the region v € {C,
v ¢ N} is given by

(1 —w) (—t)v—te==t
Ga(v,2,w) = —52 /ﬁ A= e )1 = ewh) ®)
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where the contour £, is the Hankel’s contour shown in fig. 1. This last formula may be
proved by shrinking the contour £, around the straight [0, cce??). Therefore, we have
the following proposition.

Proposition 1. For fited w > 0, the analytical continuation of the double zeta function
Ca(v, z,w) defined in (1) to {z € €, |Arg(z)| < 7} and {v € C, v # 1,2}, is given by

tv—le—zt

ol 2ow) = S0) | gy ()

where the integration path C, is the straight line [0, 00e'?) if R(v) > 2 or the Hankel’s
contour L, given in fig. 1if v ¢ N. The parameter ¢ is an angle verifying |¢| < § and
|Arg(2) + ¢| < 5, and

B [(v)~1 if Re(v) >2
S(U) = {i(2ﬂ)_1ei“(1_”)r(1 — 1)) if v ¢ I\

Im(t)

2Tia(w) ¢
N

o -2Tia(w)

L

Figure 1. Hankel's contour involved in the integral representation (3) of (2(v, z,w). It surrounds
the half-line [0, 00¢'#) in the counterclockwise direction and does not enclose any pole +2ni,
+2nmi/w, n € N of the integrand in (3). Then, in this picture, a(w) =Min{1,w1}.

3. Asymptotic expansions of the double zeta function

The integral representations given above are the starting point to derive asymptotic
expansions of (5 (v, z, w) for large or small z or w. These expansions are given in theorems
1-6. Empty sums must be understood as zero in the remaining of the paper.
Theorem 1. For w > 0, |Arg(z +w — 1)| < 7 and v # 1,2, an asymptotic expansion
of (2(v, z,w) for large w and N =0,1,2,4,6, ... is given by

By, Cu(v,14 (2 —1)/w)

wn+v 1

Co(v,z,w) = (v, 2) + Z + Ry (v, z,w), (5)



where By, are the Bernoulli numbers, ((s,a) is the Hurwitz zeta function and

(v—=1)p .
_ )5 Cn+tv—1,2) if n+2—u
Cn(v,2) = { (=1)(n — 2)! if n=2—v, n=234,.. (6)

In this formula (v), denotes the Pochhamer simbol of v. The error term verifies
Ry(v,z,w) = O(w ¥R+ 45 w — 0. More precisely, for N = 0,1,2,4,6, ...,
R(w) > 2—= N and R(z +w — 1) > 0, an error bound for the remainder is given
by

|Ry (v, z,w)| < { ‘]BG\']‘ [w Rz - 17(]\7 +Rv—227(w+Rz—1))+
7(N+§Rv—1,27r(w+§f€z—1))}+ (7)
I'(N+*Rv—1,2n(w+ Rz — 1)) 1
2rN—1(1 — e—2mw) IT(v)|(w + Rz — 1)N+Rv—17

where y(a,z) and T'(a,x) are the incomplete gamma functions [[1], eqs. 6.5.2 and 6.5.3].
For N =0,1,2,4,6,..., R(v) >2— N and |Arg(z + w — 1)| < 7, an error bound for the
remainder is given by

(N + Rv — 2) [\1+%\+N+%v—2}cot(g—g)

R I < S
[ (0, 2, w)] < 2e#SV|T(v) |7V =1 (cos )V (Jw 4 z — 1| cos p) N+HRv—1

, (8

with o = —3Arg(z + w — 1).

Proof. We introduce the decomposition

1 e~ wt
1— e wt :1+1—e*m )
in either of the integral representations given in proposition 1. Then, using [[19], p. 75,
ex. 3.16] we have

tv—le—(ztw—1)t

Ca(v, z,w) = (v, 2) + S(v)/c O 6_wt)alt. (10)

We introduce now the expansion [[1], eq. 23.1.1]

N-1

t By,
= ﬂt’“ + 7 (t), It| < 2, N =0,1,2,4,6,...,  (11)
k=0

where ry(t) = O(tV) as t — 0, into the integrand of equation (10). Interchanging sum
and integral and using again [[19], p. 75, ex. 3.16] we obtain (5) with

tv—2e—(z+w—1)t
Ry (v, z,w) = S(v)/ —————ry(t)dt. (12)

C, 1 —ewt
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In [[11], sec. 3.1] it is shown that sign(rey(t)) = —(=1)" for N = 2,3,4,... and 0 <
t < 2m. It is easy to show that also, ro(t) > 0, r1(t) < 0 and ro(t) > 0. Therefore,
two consecutive error terms ry(t) (with N =0,1,2,4,6,...) in the expansion (11) have
opposite sign. Applying the error test (see [[22], p. 38]) we find,

| Bx|

re ()] <t 0<t<2m, N =0,1,2,4,6, ... (13)

On the other hand, for any ¢ € €' we consider the explicit expression of ry(t) given by
the Lagrange form for the remainder of the Taylor expansion (11):

B 1 dN T
)= 3oy v o1

where £ € (0,t). By the Cauchy’s integral theorem,

t, N =0,1,2,4,6,...,
T=§

1 udu
ra(t) = %/c (u—§)N+1(eu_1)tN’ N =0,1,2,4,6,..., (14)
where C is a circle with center at the point £ that does not enclose any singularity of
(e* — 1)1 In order to find bounds of Ry (v, z,w), we require bounds of r(t) valid for
fixed Arg(t) = ¢ with |¢| < 7/2 and 0 < |t| < co. Therefore, we make the change of
variable u = ¢ + 7 cos e, (observe that 7cosp < the distance of the t—axis to the
first singularities £2mi of (e* — 1)~ see figure 1), obtaining

tN

Irn(t)] < O(@)Wa

N =0,1,2,4,6,..., (15)
where C(¢) is a bound of |u/(e* — 1)| in the shaded region depicted in figure 1. The

maximum of the function |u/(e* — 1)| in that region is located on the contour of the
region. When || < 7/2, a simple bound may be chosen:

Cly) = gcot (% - %) . (16)
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Figure 2. The circle of radius r = 7 cos ¢ centered at &, with § € (0,t), used in the Cauchy
definition of T (t) must be contained in the shaded region. This region is defined by the set
{u€eC |lu—tl <mcosy, 0 < |t| < 0o, Arg(t) = p}.

When |Arg(z +w — 1)| < 7/2 and R(v) > 2 — N we can take ¢ = 0 in the integral
(12) with Cy = [0,00) (and S(v) = I'(v)~!). Then we introduce the bound (13) in
that integral for ¢ € [0,27) and the bound (15) for ¢t € [27,00). Taking C(0) = 7/2,
the bound wt(1 — e~ ) ~1 < 1 + wt in the first integral and (1 — e *%)~1 < (1 —
e~2™)~1 in the second one, after trivial manipulations we obtain (7). Nevertheless, for
|Arg(z + w — 1)| < m and R(v) > 2 — N we can take ¢ = —1Arg(z +w — 1) in the
integral (12) with C = [0, 00e’?). Then introducing the bound (15) in (12) and using
lwt(1 — et~ < (cos ) 7! + |wt| we obtain (8).

Using again formula (14) with £ € (0,t), Arg(t) = ¢, it is easy to show that
|TN(t)| SC’N(SDNHN’ teﬁsm N:0717274767'“7 (17)

where Cx () is independent of |¢|. Introducing this bound in (12) with C, = £, and
¢ = —3Arg(z + w — 1) we obtain that, for v ¢ N,

MN(’anaSO) Z)
|w +z— 1|N+§Rv—1’

|RN(U7 va)’ S

where My (v, w, ¢, z) is bounded for large w. Therefore, (5) is an asymptotic expansion
also for R(v) <2 — N with v # 1, 2. O
Theorem 2. For w > 0, |Arg(z)| < 7, v # 1,2 and N = 2,4,6, ..., an asymptotic
expansion of (2(v, z,w) for small w is given by

N—1 n
Co(v, z,w) = Z (_DiBnCn(v,z)w"_l + Ry (v, z,w), (18)

|
ne0 n:

where (,(v,2) are given in (6) and Ry(v,z,w) = O(w~~1) as w — 0. More precisely,
for N = 2/4,6,..., R(v) > 2— N and R(z) > 0, an error bound for the remainder is

given by

Rtz < { By (o -2, 20 ) ey
R(z 19
N+ Ro—1 271.%(2) F(N+%U—1,2T()> wN—l ( )
7 " w 2rv1(1— e2r/w) [ [D(0)|(Re)NToo—1"

For N =2,4,6,..., R(v) > 2 — N and |Arg(z)| < m, an error bound for the remainder
s given by

_ _ N—1
R (v, 2,)] < 2(|z|—|—N—|—§Ev 2)I'(N + Rv - 2)w t(ﬂ' \g0|>7 (20)

e#S? |0 (v) w1 (cos )N (| 2] cos @) N +Rv—1 4 2



with p = —%Arg(z).

Proof. We introduce the expansion [[1], eq. 23.1.1]
N-1

wit (—1)kBk
e > T(wt)k +ry(wt), |wt|<2m, N =0,1,2,4,6,.., (21)

k=0

where 7y (t) = O(tV) as t — 0, in either of the integral representation given in proposi-

tion 1. Interchanging sum and integral and using [[19], p. 75, ex. 3.16] we obtain (18)

with

S v tv—2e—zt
Ry (v, 2,w) = fu) /cw —r(wt)dt (22)
The terms of the expansion (11), with ¢ replaced by wt, coincide with the terms of
the expansion (21) from n = 2 because By,+; = 0 for n = 1,2,3,.... Therefore, the

remainder 7y (wt) in (21) satisfies the bounds (13) and (15) for N = 2,4,6,.... On the
other hand, the bound (17) holds for every N. When |Arg(z)| < 7/2 and R(v) > 2— N,
we can take ¢ = 0 in the integral (22) with C = [0,00). Then we introduce the bound
(13) of ry(wt) in that integral for wt € [0,27) and the bound (15) for wt € [27, 00).
Using the bound #(1—e~*)~! < 1+t in the first integral and (1—e~*)~! < (1—e27/®)~1
in the second one and after trivial manipulations we obtain (19). For |Arg(z)| < 7 and
R(v) > 2— N we can take ¢ = —LArg(z) in the integral (22) with C = [0, coe™?). Using
the bound [t(1—e~%) 71| < (cos p) 1 +|t| for t € [0,00e'?) and after trivial manipulations
we obtain (20). Introducing the bound (17) in (22) with ¢ replaced by wt for C, = L,
with ¢ = —1Arg(z) we obtain that, for v ¢ N,
IRy (v, z,w)| < My (p, 2, 0)w™ 1,

where My (¢, z,v) is independent of w. Therefore, (18) is an asymptotic expansion for
small w also when R(v) < 2 — N with v # 1, 2. 0

The bounds given in this theorem, although accurate when z is close to the real axis,
do not hold for N = 0,1. The error bounds given in the following theorem are valid for
every N € N.
Theorem 3. For w > 0, |Arg(z —w)| < m, v # 1,2 and N = 0,1,2,4,6,..., an
asymptotic expansion of (2(v, z,w) for small w is given by

N-1

Ca(v, z,w) = Z %Cn(v, z —w)w" "t + Ry (v, 2,w), (23)
n=0 ’

where C,(v,z) are given in (6) and Ry(v,z,w) = O(w""!) as w — 0. For N =
0,1,2,4,6,..., R(v) > 2 — N and R(z — w) > 0, an error bound for the remainder is
given by

|Rn (v, z,w)| < {% [v(N 4+ Rv —2,27R(z/w — 1)) R(z — w)+
Y(N +Rv—1,20R(z/w — 1))] + (24)

N—1

F(N+§Rv—1,27r§R(z/w—1))} w
2(1 — e=2m/w)pN—1 IT(v)|(R(z — w))N+Re—1"
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For N =0,1,2,4,6,..., R(v) > 2 — N and |Arg(z — w)| < 7, an error bound for the
remainder is given by

|RN(U’Z7w) < 4 2

| (|]z —w| + N + Rv — 2)I(N + Rv — 2)wV ! ([T || (25)
> 2€<PSU|F(U)|7TN_1(COS QO)N(|Z _ w‘ cos SO)N-{-&Ev—l )

where ¢ = —1 Arg(z — w).
Proof. We write

_S(v) tv=2e= (0t gt
Ca(v, z,w) = " /c¢ = ewt_ldt.

and introduce in this integral the expansion [[1], eq. 23.1.1]

N—

,_.

B
1 ) 4y (wt), N =0,1,2,4,6,...,

k=0

where ry(t) = O(t") as t — 0. The remaining proof is similar to the proof of theorem
2, but now the bounds (13) and (15) hold from N = 0. O
Theorem 4. For w > 0, |Arg(z)] < m, v # 1,2 and N = 0,1,2,..., an asymptotic
expansion of (2(v, z,w) for large z is given by

N-1 £

C2(v, z,w) = Z % + Ry (v, 2, w), (26)
n=0

where Ry (v, z,w) = Oz~ V" R+2) 45 2 — o0 and

n

(=1)"(v = 2)n w" By By
w(v—1)(v—2) pors El(n — k)!

B,(v,w) = (27)

For N =0,1,2,..., |Arg(z)| < m and R(v) > 2 — N, an error bound for the remainder
18 given by

e PSUT(N + Rv — 2) 2 () cos
w(na(w) cos )V [T (@) ([2] cos @) 7002 {” ( (1) cos o

2
%cot(z—‘ﬂ>> +N+3‘Ev—2[wN+%v—1+ (28)

2 |z| cos ¢ |z| cos ¢

(1 + w) (% cot G - @) + aw) COSgO)] } ,

where p = —1 Arg(2) and a(w) =Min{1,w™'} was introduced in fig. 1.

[Bx (v, 2, w)| <
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Proof. We introduce in the right hand side of (4) the expansion

N-—1
¢ ¢
l—et1 _u;fwt =) (v, W)t +ry(w, 1), N=01,23,.. (29
k=0

where 7y (w,t) = O(t") as t — 0 and

owk JBB
o = (1 Y P

Jj=

Interchanging sum and integral we obtain (26) with

Ry(v,z,w) = %/ t' et (w, t)dt. (30)
C‘P

We consider now the explicit expression for ry(w,t) given by the Lagrange form for
the remainder of the Taylor expansion and the Cauchy’s integral theorem,

w u?du
ra(w, ) = 2—m/c T e e_wu)tN, N=0,1,2,3,...., (31
where C is a circle with center at the point £ € (0,t¢) that does not enclose singularities
of (1 —e )71 — e %)~ In order to find bounds of Ry (v, z,w) we require bounds
of ry(w,t) valid for fixed Arg(t) = ¢ with |¢| < 7/2 and 0 < |t| < co. Therefore, we
proceed here as in the proof of theorem 1, but now we introduce in (31) the bound
lu(l — e )7 < C(p) + |u|, where C(¢p) is given in (16) and u belongs to the shaded
region of fig. 2. Then, it is easy to show that, for N =0,1,2,4,6, ...,

MN € [0, 00e™®). (32)

[ra(w, )] < [Clp) + 1+ [t [C(e) +r +wlt] — 5
where 7 = Ta(w) cos . Introducing this bound in (30) with C = [0, cce’?) and R(v) >
2 — N and after trivial manipulations we obtain (28). Using a similar argument we have
that ry(w,t) satisfies a bound similar to (32) for any t € L,

[ (w, )] < Co(w, @) [E1Y (1 +[¢]), t €Ly,
where C (w, ) is independent of |¢|. Then, introducing this bound in (30) with C, = L,
and ¢ = —1Arg(z) we obtain that, for v ¢ N and |z| > 2o > 0,
MN (U, ') U])

[Bx (v 2,w)l < - nmems

where My (v, p, w) is independent of |z|. Therefore, (26) is an asymptotic expansion for
large z also when R(v) <2 — N with v # 1, 2. O
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Although the expansion given in the preceding theorem is quite simple, the error

—N—R(v)+2

bound is not quite sharp because the coefficient in front of (|z| cos ¢) is large.

A more accurate error bound for large z is given in the following theorem.
Theorem 5. For w > 0, |[Arg(z —w — 1) < 7w, v # 1,2 and N = 0,1,2,..., an
asymptotic expansion of (2(v, z,w) for large z is given by

i Bn(v, zZ,w)
G(v,zw) =Y G w + Ry (v, 2,w), (33)
=0

n

where Ry (v, z,w) = Oz 28" R©)+6=2+In)OC=N)) 45 » — o0,

- - Bop 245, Ban—2k—246,_,
Bn(v,z,w) = . X
(v, 2,w) kZ:O(Qk'—2—|—5k)!(2n—2k—2+5n—k)! (3)
(U —6+ An,k)Qn w2n_3_2k+6n7k

(v—6+ An’k)(;,Amk (z —w—1)Anrk

and we have defined 0, = 20k,0 + 0,1, Ank = 0k + 0p—k and

1 if n>0
@(”):{0 if 7 <0. (35)

For N =0,1,2,..., R(v) >6 —2N — (24 05)0(2— N) and R(z —w —1) > 0, an
error bound for the remainder is given by

|[Rv(v, 2, w)] < w|F(v)|[%(ZCLVZ]?_Z’;L)}]’Z(?HR@)—G—MN ’ (36)
where
On (v, 20, ) = [C’J(Vl)(w)v(ZN +R() — 6+ 6, 2ma(w)R(z — w — 1))+
O (1, )TN + R(v) = 6+ 8, 2ma(w)R(z — w — 1))| O(N = 3)+
oD () V2N + R(v) — 4+ 6y, 2ma(w)R(z —w — 1)) (37)
[R(z —w —1)]?
@) (w, o) I'(2N + R(v) —[;;(er iNjiml(;f;)éR(z —w—1)) ,
D) o~ |Bak—ats] |Bon—2k—2+6, x|  on_on_o24s,
Cx (w):;](2k—2+5k)!(2N—2k—2+5nk)!w o (38)
O (w, ) = (QW)WN(:!(():S? L] 11__(@;: oot G - %) o (39)

2w



2
(3) _ A2 ™ o (T ¢l
Oy (w, ) = Cx7(w, @) + 10 cos VB~ —TFon cot (Z - 7) , (40)

a(w) is defined in fig. 1.
For N=0,1,2,..., R(v) >6—2N — (2+65)O(2—N) and |Arg(z —w —1)| < 7, an
error bound for the remainder is given by

e PSP (2N + R(v) — 6 + dy)

R <
‘ N(U, Z, w)‘ _’u}|F(U)|(‘Z —w— 1’ Cos ¢)2N+§E(v)—6+6N

6P (w, 9)O(N - 3)+

41
(3) (2N 4+ R(v) =54 0x)(2N 4+ R(v) — 6+ 0x) 1)
CN (w,gp) )
(|]z — w — 1] cos ¢)?
where p = —1 Arg(z —w — 1).
Proof. Write
S(U) v=3_ —(z—w—-1)t 3 wt
C2(v’sz): w /th € ( ) etjewt—ldt (42)
and consider the expansion
N-1 p 5
2n—2+ 2n—2+4 -
t n ~(t N=0,12,..
I TN TS

This expansion verifies the error test (see the proof of theorem 1) for 0 <t < 27, and
therefore, from (13),

_ ’BQN 2+5N‘ 2N—2+6
< — 1 N 0<t<2m.
) < ezl <t<om

Nevertheless, from (15),

— C(‘F) 2N—240 i
N(t)| < t N te ooe'? 4
v (t)] < (WCOS(9)2N—2+5N| | J [0, 0ce™?), (43)

where C(yp) is given in (16). Consider now the analogous expansion for wt(e¥! —1)71,

B2n 240, 2n—246 _
t)" " t N=0,1,2,...
2n—2+5)(w) +T’N(w), y Ly 4y )

MZ

and multiply both expansions term by term. We obtain

N-1

t ¢
T =3 @ (w, ) +ra(w,t), N=0,1,2,.., (44)
n=0

et —lewt—1
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where, for n =0,1,2, ...,

n

B B
_ 2n 2k—2+05, 2n—2k—24+08,, _1
P, ) = (wt) kz (2k — 2+ 05)! (20 — 2k — 2+ 0p_)l WZRT20us”

tAn,k_4

(45)

The terms of this expansion are an asymptotic sequence for small ¢: @, (t) =
O(t?n=2+%) as t — 0. The remainder term 7~ (w,t) is given by

N-1
_ 2n _ D2n—2+446, Qn_2+5n, _ _

and therefore, rv(w,t) = Q2N ~4+E+IN)OC=N)) a5 ¢ — (. Introducing the expansion
(44) in the right hand side of (42) and after trivial manipulations we obtain (33) with

Rn(v, z,w) = @/ tv 3= W=Dt o (1) dt. (47)
w C,

Using that sign(7,(t)) = (—1)" for 0 < ¢ < 27 and sign(Ba,—2+s,) = (—1)" we have

that sign(r~(w,t)) = (—1)~. Therefore, using the error test and the bound

[t A < [t + O(N — 3)] (48)
for k=0,1,2,...,N, t € [0,00), we obtain

| (w, )] < @y (w, )] < O (w)[EP¥ 40N [t + O(N = 3)],  0<t < 2ra(w).
(49)
Nevertheless, introducing the bound (43) in (46) for either 7, (t) or 7, (wt), using [[1],
egs. 23.1.14 and 23.1.15] and (48) we obtain

[ra(w, 0] < [ (w, @)t + CF (w, @)O(N = )| Jf2¥ 4, ¢ € [0,006™).

(50)
When |Arg(z + w — 1)| < 7/2 and R(v) > 6 — 2N — (2 4+ 0,)O(2 — N) we can take
¢ = 0 in this integral with C = [0,00). Then we introduce the bound (49) in that
integral for ¢t € [0,2ma(w)) and the bound (50) for ¢t € [2ma(w),o0). After trivial
manipulations we obtain (36)-(40). Nevertheless, for |Arg(z + w —1)| < 7 and R(v) >
6 —2N — (2+6,)O(2— N) we can take ¢ = —SArg(z +w — 1) in the integral (47) with
C, = [0,00e'?). Then introducing the bound (50) in (47) we obtain (41).

Using the Lagrange formula for the remainder r (w, t), the Cauchy’s integral formula
for the derivative of an analytic function it is easy to show that, for N = 0,1, 2,... and
p =Arg(t),

[ (w, )] < Cv(w, @)tV (1 + [¢]2), t €Ly,
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where C'n(w, ¢) is independent of |¢|. Introducing this bound in (47) with C, = £, we
obtain that, for v ¢ N and |z| > zp > 0,

M~ (v, p,w, z)

|Bn (v, z,w)| < [2[2V+R(0)—a+dx

where M ~(v, ¢, w, z) is bounded for large |z|. Therefore, (33) is an asymptotic expansion
for large z also when R(v) <6 —2N — (24 6,)O(2 — N) with v # 1, 2. O
Remark. Observe that the expansions given in theorems 1-5 are all finite for v =
0,—1,-2,-3, ...

Theorem 6. For R(z)+w > 0, |z| < w, v # 1,2 and N = 0,1,2,..., a convergent
expansion of (2(v, z,w) for small z and/or large w is given by

N-1 n
Gl mw =)+ Y Tl Gm v w ) + Ru.zw), (61
n=0 ’

where Ry (v, z,w) = O(z") as z — 0. Moreover, for R(v) >2— N and N =0,1,2, ...,
the remainder term is bounded by

T(N + R(v))
|Rn (v, z,w)| SW
L(N +R(v) — 2)|2|"
NIT()[[w + R()0(—R(=) ]+ 72 [” 52
N+ R(v) — 2 N+ R(v) —1
w+ R(2)0(—R(2)) (1 My %(z)@(—%(z»)] ’

G (N + R(w),w + R()O(—R(2)), w) 2] <

where ©(n) is defined in (35).

Proof. Introduce the decomposition (9) in either of the integral representations
given in proposition 1 with ¢ = 0. Then we obtain

Co(v, z,w) = ((v, 2) + C2(v, z,w),

where

_ v—1_,—wt
CG(v,z,w) = S(v)/c i zt)(el — eiwt)e_tht.

If we introduce now the expansion

—

5
et = Z o t"2" +ry(tz)
=0 ’

3

in this integral, we obtain (51) with

tv e Wirn(t2)

Ry (v, z,w) = S(v) /CO 1= e—wt)dt' (53)
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Using the Lagrange form for the remainder 7y (¢z), we obtain
o—tR(2)O(—R(2)

It < —

[tz|™.

Introducing this bound in the integral (53) we find that, for w + R(2)0(—R(z)) > 0,
Ry (v, z,w) = O(2V) as z — 0, and moreover, that limy_,o, Ry (v, z,w) = 0 if besides,
|z| < w. On the other hand, for N + R(v) — 2 > 0, after trivial manipulations in the
integral (53) we obtain the first inequality in (52). The second inequality follows if we
use besides the inequalities t(1—e~ ") < 1+t and wt(1 —e~') < 1+wt in that integral.
O

4. Numerical experiments

Tables 1-13 show numerical experiments about the approximation supplied by the-
orems 1-6 and the accuracy of the error bounds.

In all these tables, the second column represents the value of (3(v, z, w). The third
and sixth columns represent, respectively, a first and a second approximation given
by the corresponding theorem. Fourth and seventh columns represent the respective
relative errors Ry (v, z,w)/C2(v, z,w). Fifth and last columns represent the respective
error bounds given by the corresponding theorem.

Table 1 (theorem 1) (z =1,v = 3)

First (N = 1) | Relative | Relative | Second (N = 2) | Relative | Relative
w (2(3,1,w) |order approx. | error er. bound | order approx. error er. bound
10 |1.20970747 1.21028157 | 4.74e-4 6.2e-4 1.20968054 | 2.22e-5 2.75e-5
20 | 1.20403962 1.20411307 6.1e-5 7.79e-5 1.20403794 | 1.39e-6 1.73e-6
50 |1.20238112 1.20238589 | 3.96e-6 4.99e-6 1.20238108 | 3.43e-8 4.44e-8
100 | 1.20213855 1.20213915 | 4.98e-7 6.24e-7 1.20213855 | 1.83e-9 2.77e-9
200 | 1.20207739 1.20207746 | 6.25e-8 7.8e-8 1.20207739 | 3.67e-11| 1.73e-10
Table 2 (theorem 1) (z = 1.5+ 1.5i, v = 4)
First (N =1) |Relative | Relative |Second (N = 2) | Relative | Relative
w (2(4,1.5 4+ 1.5i,w) | ord. approx. error er. bound | ord. approx. error er. bound
10 -0.014450327 - -0.0143484 - 0.0056 0.0079 | -0.014457534 - | 0.000516 0.00067
0.020237395i | 0.020332539i 0.020226785i
20 -0.01499289 - -0.0149878 - | 0.000215 | 0.000276 | -0.014993077 - | 8.19e-6 9.93e-6
0.01991197i 0.01991369i 0.019911884i
50 -0.01505355 - | -0.01505344 -| 4.16e-6 5.18e-6 -0.01505354 - | 5.69e-8 6.83e-8
0.019897419i 0.01989743i 0.019897418i
100 -0.015056684 - | -0.015056678 - | 2.37e-7 2.94e-7| -0.015056684 - | 1.56e-9 1.88e-9
0.019897134i | 0.019897134i 0.019897134i
200 | -0.0150570554 - |-0.015057055 - | 1.42e-8 1.75e-8 | -0.0150570554 - | 4.6e-11| 5.54e-11
0.019897117i| 0.019897117i 0.019897117i




Table 3 (theorem 2) (z = 1,v = 10)
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First (N = 2) | Relative | Relative | Second (N = 4) | Relative | Relative
w (2(10,1,w) |order approx. | error er. bound | order approx. error er. bound
0.1 1.69545592 1.61383995 0.048 0.054 1.69721446 0.001 0.0012
0.05 2.76864311 2.72718260 0.015 0.016 2.76886986 | 8.19e-5 8.97e-5
0.02 6.08387084 6.06721058 0.0027 0.003 6.08388548 2.4e-6 2.6e-6
0.01 [11.64225949 | 11.63392387 | 0.00071 0.00079 11.64226132 | 1.57e-7 1.7e-7
0.005 | 22.77151895 | 22.76735046 | 0.00018 0.0002 22.77151919 l.e-8 1.1e-8
Table 4 (theorem 2) (z =14, v = 6)
First (N =2) |Relative | Relative |Second (N = 4) | Relative | Relative
(2(6,1,w) ord. approx. error er. bound | ord. approx. error er. bound
0.1 -0.77425775 - | -0.777180201 - 0.0292 0.4721 -0.7742432 - | 0.000267 0.0804
1.67084705i 1.72446627i 1.67133821i
0.05 |[-1.04900585 -| -1.05047254 - 0.0073 0.1195 -1.04900404 - 1.66e-5 0.0051
3.482790811 3.50941527i 3.48285124i
0.02 [-1.86976231 - | -1.87034959 - 0.0012 0.0192 -1.86976219 - 4.26e-7 0.00013
8.85363279i 8.864262261 8.853636651
0.01 |[-3.23651764 - | -3.23681133 -| 0.00029 0.0048 -3.23651763 - 2.66e-8 8.19e-6
17.78369395i 17.7890072i 17.7836944331
0.005 | -5.96958795 - -5.9697348 - | 7.363e-5 0.0012 -5.96958795 - | 1.666e-9 5.12e-7
35.63584073i 35.63849719i 35.63584079i
Table 5 (theorem 3) (z = 1,v = 10)
First (N = 1) | Relative | Relative | Second (N = 2) | Relative | Relative
w (2(10,1,w) |order approx. | error er. bound | order approx. error er. bound
0.1 1.69545592 2.87149806 0.6936 0.9304 1.43668397 0.1526 0.1707
0.05 2.76864311 3.53153438 0.2755 0.3335 2.69580351 0.0263 0.0289
0.02 6.08387084 6.67555648 0.097 0.112 6.06306638 0.0034 0.0037
0.01 [11.64225949| 12.18633612 0.0467 0.0527 11.63294976 0.0008 0.00088
0.005 | 22.77151895 | 22.76735046 0.0229 0.0256 22.77151919 | 0.00019 0.00021
Table 6 (theorem 3) (z=1+14, v=26)
First (N =1) |Relative | Relative |Second (N = 2) | Relative | Relative
¢2(6,1+4,w) |ord. approx. error er. bound | ord. approx. error er. bound
0.1 -0.27425775 4 | -0.25874755 + 0.1975 0.794 | -0.27973327 + 0.01551 0.1303
0.27867593i 0.35432687i 0.27606469i
0.05 |[-0.54900585 + -54442706 + 0.093 0.345 -0.55106037 0.0035 0.0272
0.492150541 0.56040679i1 0.490639141i
0.02 |[-1.36976231 + |-1.37053862 + 0.036 0.127 | -1.37043853 + 0.00052 0.0039
1.13636347i 1.1999728i 1.13574025i
0.01 |-2.73651764 4 | -2.7388938 + 0.0176 0.0617| -2.73683313 4+ | 0.000126 | 0.000947
2.2113056i 2.273352431 2.21099292i
0.005 | -5.46958795 + -5.47273082 0.0088 0.031 -5.4697402 + | 0.0000312 | 0.000233
4.3616592i 4.422924024i 4.36150279i




Table 7 (theorem 4) (w =2,v=4)
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First (N = 1) | Relative | Relative | Second (N = 2) | Relative | Relative
z ¢2(4,2,2) order approx. | error er. bound | order approx. error er. bound
10 0.001134136 | 0.0008333333 | 0.26523 1.2103 0.0010833333 0.0448 0.25085
20 0.000242604 | 0.000208333 0.141 0.62 0.0002395833 0.0124 0.062
50 0.0000354082 | 0.0000333333 0.0856 0.25 0.0000353333 | 0.00212 0.00974
100 | 8.58796461e-6 8.3333e-6 | 0.02965 0.125 8.5833e-6 | 0.000539 0.0024
200 2.114869e-6 2.08333e-6 0.0149 0.0628 2.11458e-6 | 0.000135 0.0006

Table 8 (theorem 4) (w = 0.75, v = 5.3, Argz = 7)

First (N =2) | Relative | Relative | Second (N = 4) | Relative | Relative
|z2| | ¢2(5.3,2,0.75) |ord. approx. |error er. bound | ord. approx. error er. bound
10 |-0.000110725 -| -0.00007857 - 0.241 3.74| -0.000107734 - 0.0336 0.577

0.000075201i 0.00007857i 0.000078567i
20 -0.00001173 - | -9.82092e-6 - 0.126 1.9156 -0.00001164 - 0.0089 0.1454
9.7215791e-6i | 9.8209275e-6i1 9.8209275e-6i
50 -6.76164481 - -6.2853936 - 0.0516 0.7764 -6.75206027 - 0.0015 0.0233
6.2755743i 6.28539361 6.28539361
100 | -8.151404e-8 - | -7.856742e-8 - 0.026 0.39| -8.148409e-8 - | 0.00038 0.0058
7.8537101e-8i 7.856742e-8i 7.856742e-8i
200 | -1.00042e-8 -|-9.820927e-9 - 0.013 0.195| -1.000322e-8 - | 0.000095 0.00146
9.81998e-9i 9.820927e-9i 9.820927e-9i
Table 9 (theorem 5) (w = 0.5,v = 5)
First (N =1) | Relative | Relative |Second (N = 2) | Relative | Relative
z ¢2(5,2,0.5) |order approx. |error er. bound | order approx. error er. bound
10 | 0.0002090624 0.000271389 0.2981 0.3436 0.000199550 0.0455 0.0494
20 |0.0000233252 | 0.00002632289 0.128 0.1372 0.0000231214 | 0.00873 0.009
50 1.3948e-6 1.46091e-6 0.0474 0.04859 1.393136e-6 0.0012 0.00122
100 1.704628e-7 1.743974e-7 0.023 0.0233 1.704137e-7 | 0.000288 0.00029
200 2.106914e-8 | 2.13092034e-8 | 0.01139 0.01146 | 2.10676634e-8 7.03e-5 7.06e-5
Table 10 (theorem 5) (w = 0.05, v = 6, Argz=7)
First (N =1) | Relative | Relative |Second (N = 2) | Relative | Relative
|| ¢2(3,2,1) ord. approx. error er. bound | ord. approx. error er. bound
10 |-0.00011484 + | -0.00012759 + 0.2457 2.2864 | -0.000116165 + | 0.02557 0.34734
0.000016789i | 0.000042298i 0.0000141319i

20 -6.7139e-6 + -7.1635e-6 + 0.1136 0.811 -6.7222e-6 + | 0.005543 0.0566
4.942e-7i 1.113e-6i 4.578e-Ti

50 -1.6475e-7 + -1.6948e-7 + 0.0433 0.2681 -1.6476e-7 + | 0.000814 0.00715
4.8749e-9i 1.023e-8i 4.7413e-9i

100 | -1.01485e-8 + -1.0297e-8 + | 0.02133 0.126 -1.0148e-8 + | 0.000198 0.00166
1.504e-10i 3.0817e-10i 1.484e-10i

200 | -6.296e-10 + | -6.3428e-10 + 0.0106 0.0612 -6.2964e-10 + 4.9e-5 3.99e-4
4.6706e-12i 9.45e-12i 4.6397e-12i




Table 11 (theorem 6) (w = 1,v = 3)
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First (N = 1) | Relative | Relative |Second (N = 2) | Relative | Relative
z ¢2(3,2,1) |order approx. | error er. bound | order approx. error er. bound
0.1 1.52996633 1.64492907 0.07514 | 0.359485 1.5247234 | 0.003426 | 0.062093
0.05 |1.58615778 1.64492907 0.03705 0.17337 1.58482622 | 0.000839 | 0.014973
0.02 |1.62110302 1.64492907 0.0147| 0.067855 1.62088793 | 0.000133 | 0.002344
0.01 |1.63296244 1.64492907 | 0.007328 0.03368 1.6329085 3.303e-5 5.82e-4
0.005 | 1.63893229 1.64492907 0.00366 0.01678 1.638919 | 8.2416e-6 1.449e-4
Table 12 (theorem 6) (w =1, v =3, Argz=7)
First (N = 1) | Relative | Relative | Second (N = 2) | Relative | Relative
2| ¢2(3,2,1) |ord. approx. |error er. bound | ord. approx. error er. bound
0.1 1.5600488 - | 1.64492907 0.0745 0.352 1.5599308 - | 0.003387 0.0608
0.0796089i 0.08499826i

0.05 |1.60244495 - 1.64492907 0.0369 0.1716 1.6024299 - | 0.000835 0.01481
0.0411615i 0.04249913i

0.02 1.6279304 - 1.64492907 0.0147 0.0676 1.627929 - | 0.00013 0.0023
0.01678416i 0.0169997i

0.01 |1.63642936 - 1.64492907 | 0.00732 0.0336 1.6364292 - 3.3e-5 5.8e-4
0.00844583i 0.0084998i

0.005 1.640679 - | 1.64492907 | 0.00366 0.0167 1.640679 - 8.24e-6 1.45e-4
0.004236i 0.0042499i

Table 13 (theorem 6) (w =1, v =3, Argz=7)
First (N = 1) | Relative | Relative | Second (N = 2) | Relative | Relative
2| ¢2(3,2,1) ord. approx. |error er. bound | ord. approx. error er. bound
0.1 1.63952169- 1.64492907 0.07309 0.3346 1.64492907 - 0.00329 0.05779
0.12003295i 0.12020571

0.05 |1.643576428 -| 1.64492907 0.03654 0.1672 1.64492907 - | 0.0008225 0.01444
0.0600812i 0.06010285i

0.02 |1.644712609 - | 1.64492907 |0.014615 0.06687 1.64492907 - 0.00013 0.0023
0.02403975i 0.02404113i

0.01 1.64487495 - 1.64492907 | 0.007307 0.03344 1.64492907 - 3.29e-5 5.8e-4
0.0120204i 0.01202057i

0.005 1.64491554- 1.64492907 0.00365 0.0167 1.64492907 - 8.23e-6 1.44e-4
0.00601026i 0.00601028i
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5. Conclusions

We have obtained two integral representations, eqs. (2) and (3), for the double zeta
function from the double series definition given in (1). In that definition, the double
zeta function (2(v, z,w) is defined for R(z), R(w) > 0 and R(v) > 2. For w > 0, these
integrals define the analytical continuation of (2(v, z,w) to the complex z and v planes
with |Arg(z)| <7 and v # 1, 2.

Appropriate Taylor expansions of the integrand in either of these integrals let us to
obtain asymptotic expansions of (2(v,z,w) for large or small z or w in theorems 1-6.
These Taylor expansions verify the error test in a large domain of v, z and w. Accurate
error bounds for the asymptotic expansions have been obtained in those theorems using
this property.

Complete asymptotic expansions with error bounds for the double gamma function
I's(z,w) should follow from the asymptotic expansions given in theorems 1-6 for the
double zeta function. This is the subject of further investigations.
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