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ABSTRACT

The Barnes double Gamma function G(z) is considered for large argument z. A

new integral representation is obtained for log G(z). An asymptotic expansion in

decreasing powers of z and uniformly valid for |Argz| < π is derived from this integral.

The expansion is accompanied by an error bound at any order of the approximation.

Numerical experiments show that this bound is very accurate for real z. The accuracy

of the error bound decreases for increasing Argz.
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1. Introduction

The double and generalized double gamma functions were introduced and primarily

investigated by Barnes [2]-[4], who applied this functions to the theory of elliptic and

theta functions. Some other mathematical applications of the double gamma function

may be found in [9]-[11] and [20]. The double gamma function is used in [20] to prove the

classical Kronecker limit formula. Its p-adic analytic extension appeared in a formula

of Cassou-Nogués for the p-adic L functions at the origin [7]. On the other hand, the

theory of the double gamma function is used in [9]-[11] and [21] to evaluate some series

involving the zeta function.

A second field of applications is found in the study of determinants of Laplacians.

In fact, multiple gamma functions evaluated at 1/2 may be expressed in terms of the

functional determinant of Laplacians of the n-sphere, which have been a recent subject

of research due to their relevance to Superstring Theory [23]. Toeplitz determinants
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with special rational generating functions may be evaluated in terms of the double

gamma function and the Gauss hypergeometric function [5]. Several properties of the

Gamma and double gamma functions may be deduced from the application of the

zeta regularization to the determinants of certain operators [24]. The double gamma

function plays a key role in deriving the determinant of the Laplacian on spinor fields

on a Riemann surface in terms of the value of Selberg zeta function at the middle of the

critical strip [19]. Some other applications of the double gamma function to the study

of determinants of Laplacians may be found in [8],[16] and [18].

The double gamma function G(z) is the integral function defined by the infinite

product [2]:

G(z + 1) = (2π)z/2e−[(1+γ)z2+z]/2
∞
∏

k=1

[

(

1 +
z

k

)k

e−z+z2/2k

]

, (1)

where γ is the Euler-Mascheroni constant. It satisfies the recursion relation G(z + 1) =

Γ(z)G(z) and, for integer positive z, it verifies G(1) = G(2) = 1 and G(m) = 1!2!...(m−

3)!(m − 2)! for m ≥ 2.

Although useful in many applications, the double gamma function G(z) has not

appeared in the tables of the most well-know special functions, and is just cited in an

exercise proposed by Whitaker and Watson [[25], p. 264] and used by Gradshteyn and

Ryzhik [[12], p. 661, eq. 6.441(2); p. 937, eq. 8.333].

However, motivated by its recent increasing interest, Richard Askey proposed re-

cently, in the ”panel discussion” of the San Diego symposium on asymptotics and applied

analysis (January, 2000), a deeper study of this function. In particular, the derivation

of asymptotic expansions of G(z) is necessary for approximating this function at large

values of z.

Asymptotic expansions of some functions that generalize the double gamma function

have been obtained by Matsumoto [13], [14] and Billingham and King [6]. Matsumoto

studies, among others, the function Γ2(z, (1, w)) introduced by Barnes in [4] as a gen-

eralization of the double gamma function: G(z) = (2π)z/2Γ−1
2 (z, (1, 1)). Billingham

and King study the generalized double gamma function Ḡ(z, τ), which satisfies the gen-

eralized recursion relation Ḡ(z + 1, τ) = Γ(z/τ)Ḡ(z) and the normalization condition

Ḡ(1, τ) = 1. It was introduced by Barnes in [3] as a different generalization of the

double gamma function: G(z) = Ḡ(z, 1).

A complete asymptotic expansion of log Γ2(z, (1, w)) is obtained in [13] and [14]

from an integral representation of this function. But this is an expansion in decreasing

powers of w and therefore, the asymptotic expansion of G(z) in decreasing powers of z

can not be obtained from Matsumoto’s expansion.

The first terms of the asymptotic expansions of the generalized double gamma func-

tion Ḡ(z, τ) for large or small z or τ have been obtained in [6] by using the method

of matched asymptotic expansions to solve the difference equation. The first terms
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of uniform asymptotic expansions are also obtained there. Therefore, an asymptotic

approximation of log G(z) = log Ḡ(z, 1) for small or large z may be obtained from the

asymptotic approximation of log Ḡ(z, τ) for small or large z respectively and fixed τ = 1.

Nevertheless, for small z, several complete convergent expansions of log G(z) in

powers of z are given in [[9], eqs. (2.1), (2.15), (2.25)]. On the other hand, complete

asymptotic expansions of log G(z) for large z are not known. The purpose of this paper

is to obtain a complete asymptotic expansion of log G(z) for large z with error bounds.

In section 2, we obtain an integral representation of log G(z) from which we derive

a complete asymptotic expansion of log G(z) for large z. In section 3 we use the error

test and Cauchy’s formula for obtaining accurate error bounds at any order of the

approximation. Numerical examples are shown as an illustration. A brief summary and

a few comments are given in section 4.

2. Asymptotic expansion

The starting point for deriving an asymptotic expansion of log G(z) is a suitable

integral representation. It may be obtained from [[9], eq. (2.15)],

∞
∑

k=2

(−1)k ζ(k)

k(k + 1)
zk+1 =(log(2π) − 1)

z

2
+ (γ − 1)

z2

2
+

z log Γ(z + 1) − log G(z + 1), |z| < 1.

(2)

Introducing the integral representation of the zeta function [[1], eq. 23.2.7] into the

left hand side of the above equation, interchanging sum and integral and after trivial

manipulations we obtain

log G(z + 1) = (log(2π) − 1)
z

2
+ (γ − 1)

z2

2
+ z log Γ(z + 1) + I(z), |z| < 1, (3)

where I(z) is the integral

I(z) ≡

∫ ∞

0

e−zx − 1 + xz − (xz)2/2

x2(ex − 1)
dx.

This integral defines an analytic function of z for Re(z) > −1 [[22], p. 30, theorem 2.3].

Therefore, the right hand side of (3) defines the analytic continuation of log G(z +1) to

Re(z) > −1.

The asymptotic expansion of I(z) for large z then provides an asymptotic expansion

of log G(z + 1). For obtaining an asymptotic expansion of I(z) we divide the integral

into two pieces:

I(z) = I1(z) + I2(z),

where

I1(z) ≡

∫ ∞

0

[

−1 + xz − (xz)2/2

x2(ex − 1)
+

e−zx

x3
−

e−zx

2x2
+

e−zx

12x

]

dx,
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I2(z) ≡

∫ ∞

0

e−zx

x3

[

x

ex − 1
−

2
∑

k=0

Bk

k!
xk

]

dx,

and Bk are the Bernoulli numbers. The integral I1(z) may be evaluated by means of

elementary techniques by writing

I1(z) = lim
ǫ→0

{

−

∫ ∞

ǫ

dx

x2(ex − 1)
+ z

∫ ∞

ǫ

dx

x(ex − 1)
−

z2

2

∫ ∞

ǫ

dx

(ex − 1)
+

∫ ∞

ǫ

e−zx

x3
dx −

1

2

∫ ∞

ǫ

e−zx

x2
dx +

1

12

∫ ∞

ǫ

e−zx

x
dx

}

.

(4)

Integrating by parts we have, for ǫ → 0,

∫ ∞

ǫ

e−zx

x
dx = − log ǫ − log z − γ + O(ǫ),

∫ ∞

ǫ

e−zx

x2
dx =

1

ǫ
+ z(log ǫ + log z + γ − 1) + O(ǫ),

∫ ∞

ǫ

e−zx

x3
dx =

1

2ǫ2
−

z

ǫ
+

z2

2

(

3

2
− log ǫ − log z − γ

)

+ O(ǫ).

On the other hand, with the change of variable x = log y,

∫ ∞

ǫ

dx

ex − 1
= − log ǫ + O(ǫ).

In order to calculate the two remaining integrals in (4) we separate their integrand in

two terms:
1

ex − 1
≡

1

x
+

1 − ex + x

x(ex − 1)

and expand 1 − ex + x in power series of x. Using [[1], eq. 23.2.7] we obtain

∫ ∞

ǫ

dx

x(ex − 1)
=

1

ǫ
+

1

2
log ǫ −

∞
∑

n=2

ζ(n)

n(n + 1)
+ O(ǫ),

∫ ∞

ǫ

dx

x2(ex − 1)
=

1

2ǫ2
−

1

2ǫ
−

1

12
log ǫ +

1

2

∞
∑

n=2

ζ(n)

n(n + 1)
−

∞
∑

n=2

ζ(n)

n(n + 1)(n + 2)
+ O(ǫ).

Taking the limit z → −1 in (2),

∞
∑

n=2

ζ(n)

n(n + 1)
=

1

2
(log(2π) − γ) .

Introducing these calculations in (4) we find

I1(z) =

(

3

4
−

γ

2

)

z2 +
1

2
(1 − log 2π)z −

1

2

(

z2 + z +
1

6

)

log z + C, (5)
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were the constant C is defined by

C ≡
γ

6
−

log(2π)

4
+

∞
∑

n=2

ζ(n)

n(n + 1)(n + 2)
. (6)

Integrating (2) with respect to z and taking again the limit z → −1 we have

∞
∑

n=2

ζ(n)

n(n + 1)(n + 2)
=

log(2π)

4
−

γ

6
−

1

12
−

∫ 0

−1

t log Γ(t + 1)dt +

∫ 0

−1

log G(t + 1)dt.

Using now [[1], eqs. 6.1.3 and 6.1.41], the definition (1) of G(z) and [[17], p. 647, eq.

1], we obtain C = − log A, where A is Glaisher’s constant defined by

log A ≡ lim
n→∞

{

log

(

n
∏

k=1

kk

)

−

(

n2

2
+

n

2
+

1

12

)

log n +
n2

4

}

. (7)

A more stable numerical algorithm useful for evaluating log A is given by (6). Another

one can be obtained using by using the Euler-Maclaurin formula [[26], p. 36] on the

right hand side of (7),

log A =
1

4
+

1

12

∫ ∞

1

B4 − B4(x − ⌊x⌋)

x3
dx =

1

4
+

1

12

∞
∑

n=1

[

(

6n2 + 6n + 1
)

log

(

n

n + 1

)

+ 6n + 3

]

≃ 0.2487544770337843.

On the one hand, the function I1(z) given in (5) is analytic in |Arg(z)| < π. On the

other hand, by using the Cauchy residua theorem we obtain that the integral I2(z) may

also be written as

I2(z) =

∫ ∞eiϕ

0

e−zx

x3

[

x

ex − 1
−

2
∑

k=0

Bk

k!
xk

]

dx, (8)

where ϕ is any angle verifying |ϕ| < π/2 and −π/2−ϕ ≤Arg(z) ≤ π/2−ϕ. Therefore,

the right hand side of (5) plus the right hand side of (8) define the analytic continuation

of log G(z + 1) to the sector |Arg(z)| < π if we define I2(z) by (8) with ϕ verifying

−π/2 − ϕ ≤Arg(z) ≤ π/2 − ϕ.

Once we have calculated I1(z) exactly, I2(z) must be approximated asymptotically.

For that purpose we substitute x/(ex − 1) in this integral by the expansion [[1], eq.

23.1.1],

x

ex − 1
=

N−1
∑

n=0

Bn

n!
xn + rN(x), N = 1, 2, 3, 5, 7, 9, ..., (9)
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where x 6= ±2mπi, m ∈ N| and rN(x) = O(xN ) as x → 0, obtaining

I2(z) =
N−1
∑

n=1

B2n+2

2n(2n + 1)(2n + 2)z2n
+ RN(z), N = 1, 2, 3, ..., (10)

where

RN(z) =

∫ ∞eiϕ

0

e−zx

x3
r2N+2(x)dx. (11)

Therefore, plugging the expansion of I2(z) and the value of I1(z) into I(z) and this into

equation (3), we obtain the following theorem.

Theorem 1. For |Arg(z)| < π, the logarithm of the double gamma function admits the

expansion

log G(z + 1) =
1

4
z2 + z log Γ(z + 1) −

(

1

2
z2 +

1

2
z +

1

12

)

log z − log A+

+
N−1
∑

n=1

B2n+2

2n(2n + 1)(2n + 2)z2n
+ RN(z), N = 1, 2, 3, ...,

(12)

In the following section we obtain bounds for RN(z) which show that in fact, (12)

defines an asymptotic expansion of log G(z + 1).

3. Error bounds

We derive now error bounds for RN(z) at any order N of the approximation (12).

We obtain first error bounds for rN(x) in three different regions of the variable x:

0 ≤ x < 2π, |x| < 2π and the shaded region depicted in figure 1. Then, we introduce

these bounds into the integral (11) defining RN(z).

3.1. Bounds for rN(x)

For 0 ≤ x < 2π, equation (9) defines a convergent expansion and therefore, for

N = 1, 2, 3, ...,

r2N+2(x) = r
(1)
N (x) + r

(2)
N (x),

where

r
(1)
N (x) ≡

∞
∑

n=0

B4n+2N+2

(4n + 2N + 2)!
x4n+2N+2

and

r
(2)
N (x) ≡

∞
∑

n=0

B4n+2N+4

(4n + 2N + 4)!
x4n+2N+4.

For real x < 2π, all the terms in the sum defining r
(1)
N (x) are negative for odd N and

positive for even N , whereas the terms in the sum defining r
(2)
N (x) are all positive for
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odd N and negative for even N . Using the bounds for the Bernoulli numbers given in

[[1], eq. 23.1.15] we find

|r
(2)
N (x)| ≤2

∞
∑

n=0

( x

2π

)4n+2N+4 1

1 − 2−4n−2N−3
≤

2(x/2π)2N+4

1 − (x/2π)4
+

2(x/2π)2N+4

(22N+3 − 1)(1 − (x/4π)4)

≤
2(x/2π)2N+2

1 − (x/2π)4
≤ |r

(1)
N (x)|.

The third inequality above may be derived by observing that the inequality

(

1 +
22N+3 − 1

16

)

a4 + a2 − 22N+3 + 1 ≤ 0

Im(w)

Re(w)

x

r

r

2 I I i
__

-2 I I i
__

r

C

Figure 1. The circle of radius r ≡ π cos ϕ centered at ξ, with ξ ∈ (0, x), used in the Cauchy

definition of r2N+2(x) must be contained in the shaded region. This region is defined by the set

{w ∈ C/, |w − x| < π cos ϕ, 0 ≤ |x| < ∞}.

holds for 0 ≤ a ≡ x/2π < 1 and N = 1, 2, 3, .... Therefore we find that

sign(r2N+2(x)) = (−1)N for 0 ≤ x < 2π and N = 1, 2, 3, ... and two consecutive er-

ror terms in the expansion (9) have opposite sign. Then, applying the error test (see

for example [[15], p. 68] or [[26], p. 38]) we find,

|r2N+2(x)| ≤
|B2N+2|

(2N + 2)!
x2N+2, 0 ≤ x < 2π, N = 1, 2, 3, ... (13)

On the other hand, for complex x with |x| < 2π we have, using [[1], eq. 23.1.15],

|r2N+2(x)| ≤
∞
∑

n=N

|B2n+2|

(2n + 2)!
|x|2n+2 ≤

2
∣

∣

∣

x

2π

∣

∣

∣

2N+2
(

1

1 − |x/2π|
+

(22N+1 − 1)−1

1 − |x/4π|

)

.

(14)
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Finally, for any x ∈ C/ we consider the explicit expression for r2N+2(x) given by the

Lagrange form for the remainder of the Taylor expansion (9):

r2N+2(x) =
1

(2N + 2)!

d2N+2

dx2N+2

(

x

ex − 1

)∣

∣

∣

∣

x=ξ

x2N+2, N = 1, 2, 3, ...,

where ξ ∈ (0, x). By the Cauchy theorem,

r2N+2(x) =
1

2πi

∫

C

wdw

(w − ξ)2N+3(ew − 1)
x2N+2, N = 1, 2, 3, ...,

where C is a circle with center at the point ξ that does not enclose singularities of

(ew − 1)−1. In order to find bounds of RN(z) we require bounds of r2N+2(x) valid for

fixed Arg(x) = ϕ with |ϕ| < π/2 and 0 ≤ |x| < ∞. Therefore, we make the change of

variable w = ξ + π cos ϕeiθ, (observe that π cos ϕ < the distance of the x−axis to the

first singularities ±2πi of (ew − 1)−1, see figure 1), obtaining

|r2N+2(x)| ≤ C(ϕ)
x2N+2

(π cos ϕ)2N+2
, N = 1, 2, 3, ..., (15)

where C(ϕ) is a bound of |w/(ew − 1)| in the shaded region depicted in figure 1.

The maximum of the function |w/(ew−1)| in the shaded region of figure 1 is situated

at a tangent point of the level lines of that function with the curve w(x) ≡ x + iy(x)

limiting that region,

y(x) =















x tan ϕ + π if −π sinϕ cos ϕ ≤ x < ∞,
√

π2 cos2 ϕ − x2 if −π cos ϕ ≤ x < −π sinϕ cos ϕ,

−
√

π2 cos2 ϕ − x2 if −π cos ϕ ≤ x < π sinϕ cos ϕ,
x tan ϕ − π if π sinϕ cos ϕ ≤ x < ∞.

Therefore, we can take the constant C(ϕ):

C(ϕ) = Maxx0,x1

{

√

x2
0 + π2 cos2 ϕ ± 2x0π sinϕ cos ϕ

sin(x0 tan ϕ)
,

π cos ϕ
√

e2x1 + 1 − 2ex1 cos
(

√

π2 cos2(ϕ) − x2
1

)















,

(16)

where x0 are the solutions of the equation tanϕ sin(x tan ϕ) = ex + cos(x tan ϕ) in the

interval [−π| sinϕ| cos ϕ,∞) and x1 are the solutions of the equations

x sin
√

π2 cos2 ϕ − x2 = ±(ex − cos
√

π2 cos2 ϕ − x2)
√

π2 cos2 ϕ − x2

in the respective intervals [−π cos ϕ,∓π sinϕ cos ϕ).
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3.2. Bounds for RN(z)

For |Arg(z)| < π/2 we can take ϕ = 0 in (11) and therefore, we can plug the bounds

(13) and (15) into the integral (11) defining RN(z). We can use (13) for 0 ≤ x < 2π

and (15) for x ≥ 2π with C(0) = π/(1 − e−π), obtaining

|RN(z)| ≤
|B2N+2|

(2N + 2)!

∫ ∞

0

e−xRe(z)x2N−1dx+

∫ ∞

2π

e−xRe(z)x2N−1

[

1

(1 − e−π)π2N+1
−

|B2N+2|

(2N + 2)!

]

dx, N = 1, 2, 3, ...

Therefore, we obtaining the following theorem,

Theorem 2. For |Arg(z)| < π/2, an error bound for the remainder RN(z) in the

expansion (12) of the logarithm of the double gamma function is given by

|RN(z)| ≤
CN(z)

(Re(z))2N
, N = 1, 2, 3, ... (17)

where CN(z) is given by

CN(z) =
|B2N+2|

2N(2N + 1)(2N + 2)
+ e−2πRe(z)

[

1

(1 − e−π)π2N+1
−

|B2N+2|

(2N + 2)!

] 2N−1
∑

k=0

(

2N − 1
k

)

k!(2πRe(z))2N−k−1.

The bound (17) is not satisfactory for Arg(z) close to ±π/2 and not valid for π/2 ≤

|Arg(z)| < π. A more accurate error bound may be obtained for Arg(z) close to ±π/2

which is valid also in the whole sector |Arg(z)| < π by using the freedom we have when

choosing the parameter ϕ in (11). For that purpose we introduce in (11) the bound (14)

for |x| ≤ π and the bound (15) for |x| > π. After trivial manipulations and choosing

ϕ = − 1
2Arg(z), we find the following theorem

Theorem 3. For |Arg(z)| < π, an error bound for the remainder RN(z) in the expansion

(12) of the logarithm of the double gamma function is given by

|RN(z)| ≤
CN(z)

|z cos(Arg(z)/2)|2N
, N = 1, 2, 3, ... (18)

where

CN(z) ≡
4(2N − 1)!

(2π)2N+2

(

1 +
2

3(22N+1 − 1)

)

+

[

C(−Arg(z)/2)

(π cos(Arg(z)/2))2N+2
−

4

(2π)2N+2

(

1 +
2

3(22N+1 − 1)

)]

×

e−π|z cos(Arg(z)/2)|
2N−1
∑

k=0

(

2N − 1
k

)

k!

(

π|z| cos

(

Arg(z)

2

))2N−1−k
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and C(ϕ) is given in (16).

This bound shows that in fact, expansion (12) is an asymptotic expansion of log G(z+

1) in the sector |Arg(z)| < π.

Tables 1-4 show numerical experiments about the approximation supplied by expan-

sion (12) for some values of z and the accuracy of the error bounds (17) and (18).

Table 1 (Arg(z) = 0)

First Relative Relative Second Relative Relative

|z| I2(z) order approx. error error bound order approx. error error bound

1 -0.0012455229 -0.0013888888 0.115 2.24 -0.0011904761 0.0442 13.4
2 -0.0003360773 -0.0003472222 0.0332 0.0425 -0.0003348214 0.00374 0.032
5 -0.0000552441 -0.0000555555 0.00564 0.00574 -0.0000552380 0.000110 0.000115
10 -0.0000138691 -0.0000138888 0.00142 0.00143 -0.0000138690 7.009e-6 7.18e-6
20 -3.4709876e-6 -3.4722222e-6 0.0003568 0.0003572 -3.4709821e-6 4.45e-7 4.47e-7
50 -5.55552382e-7 -5.5555555e-7 5.713e-5 5.715e-5 -5.55552381e-7 1.142e-8 1.143e-8
100 -1.38886905e-7 -1.38888888e-7 1.42852e-5 1.42859e-5 -1.38886905e-7 7.142e-10 7.143e-10

Table 2 (Arg(z) = π/4)

First Relative Relative Second Relative Relative

|z| I2(z) order approx. error error bound order approx. error error bound

5 -3.171562e-7 + .00571 .0159 -3.174603e-7 + .000125 .000539
.000055554i .000055555i .000055555i

10 -1.976706e-8 + .00144 .00394 -1.984126e-8 + 7.14e-6 .000023
.000013886i .000013888i .000013888i

20 -1.240075e-9 + .000357 .000984 -1.240079e-9 + 4.46e-7 1.43e-6
3.47222e-6 i 3.472222e-6 i 3.47777 e-6 i

50 -3.1746029e-11 + .0000571 .000157 -3.1746031e-11 + 1.14e-8 3.67e-8
5.555555492e-7i 5.555555555e-7i 5.555555555e-7i

100 -1.984126973e-12 1.14e-8 .0000394 -1.984126984e-12 7.14e-10 2.3e-9
+1.388888887e-7i 1.38888888e-7i +1.38888888e-7i

Figure 2. Second, third and sixth columns represent the integral I2(z) = log G(z +

1)− 1
4z2−z log Γ(z+1)+

(

1
2z2 + 1

2z + 1
12

)

log z+log A, approximation (10) for N = 2 and

approximation (10) for N = 3 respectively. Fourth and seventh columns represent the

respective relative error −RN(z)/I2(z). Fifth and last columns represent the respective

relative error bounds given by eqs. (17) or (18).
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Table 3 (Arg(z) = π/2)

First Relative Second Relative

|z| I2(z) order approx. error order approx. error

5 .000056023 .000055555 .0111 .000055873 .000119
10 .000013908 .000013888 .00143 .000013908 7.21e-6
20 3.473463e-6 3.472222e-6 .000357 3.473462e-6 4.47e-7
50 5.555873079e-7 5.55555555e-7 .0000572 5.555873016e-7 1.14e-8
100 1.3889087311e-7 1.38888888e-7 .0000143 1.3889087301e-7 7.14e-10

Table 4 (Arg(z) = 3π/4)

First Relative Second Relative

|z| I2(z) order approx. error order approx. error

5 -3.171930e-7- .00571 -3.174603e-7- .000114
.000055549 i -.000055555 i .000055555 i

10 -1.984021e-8 - .00143 -1.984126e-8 - 7.14e-6
.00001388879 i -.00001388889 i .00001388889 i

20 -1.240075e-9- .000357 -1.240079e-9 - 4.46e-7
3.472220e-6 i -3.472222e-6 i 3.472222e-6 i

50 -3.1746029e-11- .0000571 -3.17460317e-11- 1.14e-8
5.5555554e-7 i -5.5555555e-7 i 5.5555555e-7 i

100 -1.984126973e-12- .0000143 -1.984126984e-12- 7.14e-10
1.388888888e-7 i -1.388888889e-7 i 1.388888889e-7 i

Figure 3. Second, third and fifth columns represent the integral I2(z) = log G(z +

1)− 1
4z2 − z log Γ(z + 1) +

(

1
2z2 + 1

2z + 1
12

)

log z + log A, approximation (10) for N = 2

and approximation (10) for N = 3 respectively. Fourth and sixth columns represent the

respective relative error −RN(z)/I2(z).

4. Conclusions

The coefficients of the analytic expansion at z = 0 of the function in the right

hand side of (2) (which involve the logarithm of the double gamma function G(z)) are

given in terms of the zeta function. After introducing an integral representation of the

zeta function in this formula, we have derived the integral representation (8) for the

function given in the right hand side of (2). By analytical continuation, this integral

representation is valid for |Arg(z)| < π. Introducing the expansion of the integrand

(9) into this integral, we have obtained the asymptotic expansion (12) of log G(z + 1)

uniformly valid for |Arg(z)| ≤ π − δ < π. The expansion (9) verifies the error test for

real 0 ≤ x < 2π and then, an accurate error bound (17) have been obtained for the

remainder in the expansion (12) for real z. The bound (17) is not satisfactory for Arg(z)

close to ±π/2 and not valid for π/2 ≤ |Arg(z)| < π. Using the freedom we have when

choosing the parameter ϕ in (11), a more accurate error bound has been obtained for

Arg(z) close to ±π/2. Moreover, this bound is valid for the whole sector |Arg(z)| < π.

Numerical experiments in table 2 show the accuracy of the expansion (12) for real or

complex z and the bounds (17) and (18) for real z. Error bounds for complex z are less

realistic.
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