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ABSTRACT

It has been shown in [1], [5], [7] that the three lower levels of the Askey table of hyper-

geometric orthogonal polynomials are connected by means of asymptotic expansions.

In this paper we continue with that investigation and establish asymptotic connections

between the fourth level and the two lower levels: we derive twelve asymptotic expan-

sions of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials

in terms of Hermite, Charlier and Laguerre polynomials. From these expansions, sev-

eral limits between polynomials are derived. Some numerical experiments give an idea

about the accuracy of the approximations and, in particular, about the accuracy in the

approximation of the zeros of the Hahn, dual Hahn, continuous Hahn and continuous

dual Hahn polynomials in terms of the zeros of the Hermite, Charlier and Laguerre

polynomials.
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1. Introduction

It is well known that there exist several asymptotic relations between polynomials of

the Askey scheme of hypergeometric orthogonal polynomials [1], [5], [7]. For example,

the Meixner polynomials can be expressed in terms of the Hermite polynomials as follows

[1]:

Mn(x; β, c) =
n!Bn

(β)n

n
∑

k=0

Bk

zk

Hn−k(X)

(n − k)!
, (1)
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where B and X are detailed in [1]. This expansion has asymptotic character for large

β. From the first term of this expansion we can get the limit

lim
β→∞

(β)n

(

2c

β

)n/2

Mn

(

cβ − x
√

2cβ

1 − c
; β, c

)

= Hn(x),

which shows that, when the variable of the Meixner polynomials is properly scaled, the

Meixner polynomials become the Hermite polynomials for large values of β. Moreover,

this limit gives insight in the location of the zeros of the Meixner polynomials for large

values of β in terms of the zeros of Hn(x).

The asymptotic method from which expansions like (1) are obtained was introduced

and developed in [1], [5], [6] and [7]. More precisely, the method to approximate or-

thogonal polynomials in terms of Hermite polynomials is described in [5], whereas [7]

introduces the approximation in terms of Laguerre polynomials and [1] in terms of Char-

lier polynomials. In these references, asymptotic expansions of Laguerre and Charlier

polynomials in terms of Hermite polynomials and asymptotic expansions of Meixner-

Pollaczek, Jacobi, Meixner and Krawtchouk polynomials in terms of Laguerre, Charlier

and Hermite polynomials are given. That is, [1], [5] and [7] contain the 14 possible

asymptotic relations between the three lower levels of the Askey table.

Those asymptotic methods are based on the availability of a generating function

for the polynomials and is different from the techniques described in [2], [3]. The

techniques used in [2] and [3] are based on a connection problem and gives deeper

information on the limit relations between classical discrete and classical continuous

orthogonal polynomials. On the other hand, our method gives asymptotic expansions

of polynomials situated at any level of the table in terms of polynomials located at lower

levels. Our method is also different from the sophisticated uniform methods considered

for example in [8] or [9], where asymptotic expansions of the Meixner Mn(nx, b, c) or

Charlier Ca
n(nx) polynomials respectively are given for large values of n and fixed a, b, c,

x. In our method we keep the degree n fixed and let some parameter(s) of the polynomial

go to infinity. The purpose of this paper is the continuation of the asymptotic program

started in [1], [5], [7] and derive asymptotic expansions (and limits when it is possible)

between the fourth level and the two lower levels of the Askey tableau.

In the following section we summarize the asymptotic expansions and the limit

relations obtained in this paper. In Section 3 we briefly summarize the principles of the

Hermite-type, Laguerre-type and Charlier-type asymptotic approximations introduced

in [1], [5] and [7]. In Section 4 we prove the formulas of Section 2. Some numerical

experiments illustrating the accuracy of the approximations are given in Section 5.
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Figure 1. Thin arrows indicate known limits, whereas thick arrows indicate new (as far as we

know) limits derived in this paper.

2. Descending asymptotic expansions and limits

The orthogonality property of the polynomials of the Askey table only holds when the

variable x and other parameters which define the polynomials are restricted to certain

real intervals [4]. The expansions that we resume below are valid for larger domains

of the variable and the parameters and for any n ∈ N| . Nevertheless, for the shake of

simplicity, we restrict ourselves to the orthogonality intervals. All of the square roots

that appear in what follows assume real positive values for real positive argument. The

coefficients ck that appear below are the coefficients of the Taylor expansion at w = 0 of

the given functions f(w). The parameters α and β appearing in some formulas related

to the continuous Hahn polynomials read α = a + ic and β = b + id with a, b, c, d ∈ R| .

2.1. Continuous Dual Hahn to Hermite

2.1.1. Asymptotic expansion for large c:

Sa,b,c
n (x2)

(a + b)nn!
=

n
∑

k=0

ckBn−k

(n − k)!
Hn−k(X), (2)

B =

√

x4 + [a(a + 1) + b(b + 1) + (a + b)2]x2 − ab[a(1 + a) + b(1 + b) + ab]

2(a + b)2(1 + a + b)
− c

2
,

X =
c(a + b) + ab − x2

2B(a + b)
, f(w) = e−2BXw+B2w2

(1−w)−c+ix
2F1

(

a + ix, b + ix
a + b

∣

∣

∣

∣

w

)

.

2.1.2. Asymptotic property:

ckBn−k

(n − k)!
Hn−k(X) = O

(

cn+[ k

3 ]−k
)

when c → ∞ uniformly in a, b with
a

c
and

b

c
bounded.

(3)
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2.1.3. Limit:

lim
a→∞

Sa,b,ac
n

(

√

ca2 − xa
√

2a(1 + c)c

)

[

a
(

x +
√

a/2
)

√

c(1 + c)
]n = Hn(x). (4)

2.2. Dual Hahn to Hermite

2.2.1. Asymptotic expansion for large N :

(−N)nRa,b,N
n (λ(x))

n!
=

n
∑

k=0

ckBn−k

(n − k)!
Hn−k(X), λ(x) ≡ x(x + a + b + 1), (5)

B =

√

N − x

2
+

x(x + b)[(2x + b − 1)(1 + a) + x(x + b)]

2(a + 1)2(a + 2)
, X =

λ(x) − N(a + 1)

2B(a + 1)
,

f(w) = e−2BXw+B2w2

(1 − w)N−x
2F1

(

−x,−b − x
a + 1

∣

∣

∣

∣

w

)

.

2.2.2. Asymptotic property:

ckBn−k

(n − k)!
Hn−k(X) = O

(

Nn+[ k

3 ]−k
)

when N → ∞ uniformly in a, b with
a

N
and

b

N
bounded.

(6)

2.2.3. Limit:

lim
a→∞

[

(

−
√

2a
)n

Ra,b,aN
n

(

a

2

[
√

1 + 4N + 4Nx
√

2/a − 1

])]

= Hn(x). (7)

2.3. Continuous Hahn to Hermite

2.3.1. Asymptotic expansion for large a and b:

(2a + 2b − 1)nPα,β,α,β
n (x)

(2a)n(a + b + i(c − d))nin
=

n
∑

k=0

ckBn−k

(n − k)!
Hn−k(X), (8)

B =

√

1

2
p2
1(x) − p2(x), X =

p1(x)

2B
, (9)

where

p1(x) =i (1 − 2a − 2b)
bc + ad + x(a + b)

a[a + b + i(c − d)]
,

p2(x) =(2a + 2b − 1)(a + b)

{

1 − (2a + 2b + 1)[a + i(c + x)]

a[a + b + i(c − d)]

+
(2a + 2b + 1)(2a + 2b + 2)[a + i(c + x)][1 + a + i(c + x)]

2a(2a + 1)[a + b + i(c − d))][a + b + 1 + i(c − d)]

}

,

(10)
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f(w) = e−2BXw+B2w2

(1−w)1−2(a+b)
3F2

(

a + b − 1
2 , a + b, a + i(c + x)

2a, a + c + i(b − d)

∣

∣

∣

∣

− 4w

(1 − w)2

)

.

2.3.2. Asymptotic property:

ckBn−k

(n − k)!
Hn−k(X) = O

(

a
n−k

2
+[ k

3 ]
)

when a, b → ∞ with a ∼ b. (11)

2.3.3. Limit:

lim
a→∞

[(

−2

i

√

a(1 + b)

b

)n

Pα,β1,α,β1

n

(

x

√

ab

1 + b

)]

= Hn(x), with β1 = ab + id.

(12)

2.4. Hahn to Hermite

2.4.1. Asymptotic expansion for large a and N :

(−N)nQa,b,N
n (x)

(b + 1)nn!
=

n
∑

k=0

ckBn−k

(n − k)!
Hn−k(X), (13)

with B and X given in (9) and

p2(x) = (a + b + 1)(a + b + 2)

[

1

2
− x(a + b + 3)

N(a + 1)
+

x(x − 1)(a + b + 3)(a + b + 4)

2N(N − 1)(a + 1)(a + 2)

]

,

p1(x) = (a + b + 1)

[

1 − x(a + b + 2)

N(a + 1)

]

,

(14)

f(w) = e−2BXw+B2w2

(1−w)−1−a−b
3F2

(

(a + b + 1)/2, (a + b + 2)/2,−x
a + 1,−N

∣

∣

∣

∣

− 4w

(1 − w)2

)

.

2.4.2. Asymptotic property:

ckBn−k

(n − k)!
Hn−k(X) = O

(

Nn+[ k

3 ]−k
)

(15)

when a, N → ∞ with a ∼ N uniformly in b with b/N bounded.

2.4.3. Limit:

lim
a→∞

[

(

2a

2x +
√

2a

)n(
N(1 + b)

b(1 + b + N)

)
n

2

×

Qa,ab,aN
n

(

aN(1 + b) − x
√

2abN(1 + b)(1 + b + N)

(1 + b)2

)]

= Hn(x).

(16)
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2.5. Continuous Dual Hahn to Laguerre

2.5.1. Asymptotic expansion for large a and b:

Sa,b,c
n (x2)

(a + b)nn!
=

n
∑

k=0

ckLX
n−k(A), (17)

A = p1(x) + p2
1(x) − 2p2(x), X = A + p1(x) − 1, (18)

where

p1(x) = c +
ab − x2

a + b
,

p2(x) =
c(c + 1)

2
+

abc

a + b
+

ab(1 + a)(1 + b) − [c + 2ab + (1 + c)(1 + 2(a + b))]x2 + x4

2(a + b)(1 + a + b)
,

(19)

f(w) = eAw/(1−w)(1 − w)X+1(1 − w)−c+ix
2F1

(

a + ix, b + ix
a + b

∣

∣

∣

∣

w

)

.

2.5.2. Asymptotic property:

ckLX
n−k(A) = O

(

an+[ k

3
]−k
)

when a, b → ∞ with a ∼ b. (20)

2.6. Dual Hahn to Laguerre

2.6.1. Asymptotic expansion for large a and N :

(−N)nRa,b,N
n (λ(x))

n!
=

n
∑

k=0

ckLX
n−k(A), λ(x) ≡ x(x + a + b + 1), (21)

with A and X given in (18) and

p1(x) =
λ(x)

a + 1
− N,

p2(x) =
(N − x)(N − x − 1)

2
+

x(b + x) [2(2 + a)(x − N) + (b + x − 1)(x − 1)]

2(a + 1)(2 + a)
,

(22)

f(w) = eAw/(1−w)(1 − w)X+1(1 − w)N−x
2F1

(

−x,−b − x
a + 1

∣

∣

∣

∣

w

)

.

2.6.2. Asymptotic property:

ckLX
n−k(A) = O

(

Nn−k−1
)

when N, a → ∞ with N ∼ a. (23)

2.7. Continuous Hahn to Laguerre
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2.7.1. Asymptotic expansion for large a and b:

(2a + 2b − 1)nPα,β,α,β
n (x)

(2a)n(a + b + i(c − d))nin
=

n
∑

k=0

ckLX
n−k(A), (24)

with A and X given in (18), p1(x) and p2(x) given in (10) and

f(w) = eAw/(1−w)(1 − w)X+2(1−a−b)
3F2

(

a + b − 1
2 , a + b, a + i(c + x)

2a, a + c + i(b − d)

∣

∣

∣

∣

− 4w

(1 − w)2

)

.

2.7.2. Asymptotic property:

ckLX
n−k(A) = O

(

b[ n−k

2
]+[ k

3
]
)

when a, b → ∞ with a ∼ b. (25)

2.8. Hahn to Laguerre

2.8.1. Asymptotic expansion for large a, b, N :

(a + b + 1)nQa,b,N
n (x)

n!
=

n
∑

k=0

ckLX
n−k(A), (26)

with A and X given in (18), p1(x) and p2(x) given in (14) and

f(w) = eAw/(1−w)(1 − w)X−a−b
3F2

(

(a + b + 1)/2, (a + b + 2)/2,−x
a + 1,−N

∣

∣

∣

∣

− 4w

(1 − w)2

)

.

2.8.2. Asymptotic property:

ckLX
n−k(A) = O

(

Nn−k
)

when a, b, N → ∞ with a ∼ b ∼ N. (27)

2.9. Continuous Dual Hahn to Charlier

2.9.1. Asymptotic expansion for large a and b:

Sa,b,c
n (x2)

(a + b)nn!
=

n
∑

k=0

ckAn−k

(n − k)!
Cn−k(X, A), (28)

A = p1(x) + p2
1(x) − 2p2(x), X = p2

1(x) − 2p2(x), (29)

with p1(x) and p2(x) given in (19) and

f(w) = e−Aw(1 − w)−X−c+ix
2F1

(

a + ix, b + ix
a + b

∣

∣

∣

∣

w

)

.
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2.9.2. Asymptotic property:

ckAn−k

(n − k)!
Cn−k(X, A) = O

(

an+[ k

3
]−k
)

(30)

when a, b → ∞ uniformly in c with a ∼ b and c/a bounded.

2.9.3. Limit:

lim
a→∞

Sa,ab,c̃
n (x̃)

cnan(1 + b)n
= Cn(x, c), (31)

where

x̃ =
1

2

[

−a2(1 + b2) + a(1 + b)
√

a2(1 − b)2 + 4ac(1 + b)
]

,

c̃ =
1

2

[

2c − 2x − a(1 − b) +
√

a2(1 − b)2 + 4ac(1 + b)
]

.

(32)

2.10. Dual Hahn to Charlier

2.10.1 Asymptotic expansion for large a and N :

(−N)nRa,b,N
n (λ(x))

n!
=

n
∑

k=0

ckAn−k

(n − k)!
Cn−k(X, A), λ(x) ≡ x(x + a + b + 1), (33)

with A and X given in (29), p1(x) and p2(x) given in (22) and

f(w) = e−Aw(1 − w)−X+N−x
2F1

(

−x,−b − x
a + 1

∣

∣

∣

∣

w

)

.

2.10.2. Asymptotic property:

ckAn−k

(n − k)!
Cn−k(X, A) = O

(

an−k−2
)

when a, N → ∞ with a ∼ N.
(34)

2.11. Continuous Hahn to Charlier

2.11.1. Asymptotic expansions for large a and b:

(2a + 2b − 1)nPα,β,α,β
n (x)

(2a)n(a + b + i(c − d))nin
=

n
∑

k=0

ckAn−k

(n − k)!
Cn−k(X, A), (35)

with A and X given in (29), p1(x) and p2(x) given in (10) and

f(w) = e−Aw(1 − w)−X+1−2(a+b)
3F2

(

a + b − 1
2 , a + b, a + i(c + x)

2a, a + c + i(b − d)

∣

∣

∣

∣

− 4w

(1 − w)2

)

.
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2.11.2. Asymptotic property:

ckAn−k

(n − k)!
Cn−k(X, A) = O

(

b[ n−k+1

2
]+[ k

3
]
)

when a, b → ∞ with a ∼ b. (36)

2.12. Hahn to Charlier

2.12.1. Asymptotic expansions for large a, b and N :

(a + b + 1)nQa,b,N
n (x)

n!
=

n
∑

k=0

ckAn−k

(n − k)!
Cn−k(X, A), (37)

with A and X given in (29), p1(x) and p2(x) given in (14) and

f(w) = e−Aw(1 − w)−X−a−b−1
3F2

(

(a + b + 1)/2, (a + b + 2)/2,−x
a + 1,−N

∣

∣

∣

∣

− 4w

(1 − w)2

)

.

2.12.2. Asymptotic property:

ckAn−k

(n − k)!
Cn−k(X, A) = O

(

an−k
)

when a, b, N → ∞ with a ∼ b ∼ N. (38)

3. Principles of the asymptotic approximations

3.1. Expansions in terms of Hermite polynomials

To prove the results of Sections 2.1, 2.2, 2.3 and 2.4 we need the following formulas

derived in [5]. If F (w) is the generating function of the polynomials pn(x), then:

pn(x) = Bn
n
∑

k=0

ck

Bk

Hn−k(X)

(n − k)!
, (39)

where the coefficients ck follow from

f(w) =
∞
∑

k=0

ckwk, f(w) = eB2w2−2BXwF (w).

The choice of X and B is based on our requirement that c1 = c2 = 0. This happens if

we take

B =

√

1

2
p2
1(x) − p2(x), X =

p1(x)

2B

and we assume that F (0) = p0(x) = 1 (which implies c0 = 1).

The quantities X and B may depend on x, and if B happens to be zero for a special

x−value x0, say, we write pn(x0) =
∑n

k=0
ck

(n−k)! pn−k
1 (x0).
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3.2. Expansions in terms of Laguerre polynomials

To prove the results of Sections 2.5, 2.6, 2.7 and 2.8 we need the following formulas

derived in [7]. If F (w) is the generating function of the polynomials pn(x), then

pn(x) =
n
∑

k=0

ckLX
n−k (A) , (40)

where the coefficients ck follow from

f(w) =
∞
∑

k=0

ckwk, f(w) = (1 − w)
X+1

eAw/(1−w)F (w).

The choice of A and X is based on our requirement that c1 = c2 = 0. This happens if

we take

A = p1(x) + p2
1(x) − 2p2(x), X = A + p1(x) − 1 (41)

and we assume that F (0) = p0(x) = 1 (which implies c0 = 1).

3.3. Expansions in terms of Charlier polynomials

To prove the results of Sections 2.9, 2.10, 2.11 and 2.12 we need the following formulas

derived in [7]. If F (w) is the generating function of the polynomials pn(x), then

pn(x) = An
n
∑

k=0

ck

Ak

Cn−k(X, A)

(n − k)!
, (42)

where the coefficients ck follow from

f(w) =
∞
∑

k=0

ckwk, f(w) = (1 − w)
−X

e−AwF (w).

The choice of A and X is based on our requirement that c1 = c2 = 0. This happens

if we take

A = p1(x) + p2
1(x) − 2p2(x), X = p2

1(x) − 2p2(x) (43)

and we assume that F (0) = p0(x) = 1 (which implies c0 = 1). If A happens to be zero

for a special x−value x0, then we write pn(x0) =
∑n

k=0 ck(−1)n−k

(

X
n − k

)

.

3.4. Asymptotic properties of the coefficients ck

The asymptotic nature of the expansions (39), (40) and (42) for large values of some

of the parameters of the polynomial pn(x) depends on the asymptotic behaviour of the

coefficients ck. The following lemma is proved in [7]:



11

Lemma 1. Let φ(w) be an analytic function at w = 0, with Maclaurin expansion of

the form

φ(w) = µsωm(a0 + a1w + a2w
2 + a3w

3 + . . .),

where m is a positive integer, s is an integer number, and ak are complex numbers that

satisfy ak = O(1) when µ → ∞, a0 6= 0. Let ck denote the coefficients of the power

series of f(w) = eφ(w), that is,

f(w) = eφ(w) =
∞
∑

k=0

ckwk.

Then c0 = 1, ck = 0, k = 1, 2, . . . , m − 1, ck = O
(

µ[sk/m]
)

if s > 0 and ck = O (µs) if

s ≤ 0 when µ → ∞.

4. Proofs of the formulae of Section 2

4.1. Proofs of the formulae of Section 2.1

Substitute:

F (x, w) = (1 − w)−c+ix
2F1

(

a + ix, b + ix
a + b

∣

∣

∣

∣

w

)

and pn(x) =
Sa,b,c

n (x2)

(a + b)nn!

in the formulae of Section 3.1 to obtain (2).

The function φ(w) = log f(w) verifies Lemma 1 with µ = c, s = 1 and m = 3.

Therefore, we have ck = O(c[k/3]). On the other hand, we trivially have B = O(
√

c),

X = O(
√

c) and Hn−k(X) = O(c(n−k)/2) and we obtain the asymptotic behaviour 2.1.2.

The limit (4) follows from the first term of the expansion (2) after obtaining x(X).

4.2. Proofs of the formulae of Section 2.2

Substitute:

F (x, w) = (1 − w)N−x
2F1

(

−x,−b − x
a + 1

∣

∣

∣

∣

w

)

and pn(x) =
(−N)nRa,b,N

n (λ(x))

n!

in the formulae of Section 3.1 to obtain (5).

The function φ(w) = log f(w) verifies Lemma 1 with µ = N , s = 1 and m = 3.

Therefore we have ck = O(N [k/3]). On the other hand, we trivially have B = O(
√

N),

X = O(
√

N) and Hn−k(X) = O(N (n−k)/2) and we obtain the asymptotic behaviour

2.2.2. The limit (7) follows from the first term of (5) after obtaining x(X).

4.3. Proofs of the formulae of Section 2.3
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Substitute:

F (x, w) = (1 − w)1−2(a+b)
3F2

(

a + b − 1
2 , a + b, a + i(b + x)

2a, a + c + i(b + d)

∣

∣

∣

∣

− 4w

(1 − w)2

)

and pn(x) =
(2a + 2b − 1)n

(2a)n(a + b + i(c − b))n
Pα,β,α,β

n (x)

in the formulae of Section 3.1 to obtain (8).

In Section 4.7 we will show that the Taylor coefficients at w = 0 of the logarithm of

the above 3F2 function are of the order O(a). Therefore, the function φ(w) = log f(w)

verifies Lemma 1 with µ = a, s = 1 and m = 3 and we have ck = O(a[k/3]). On the

other hand, we have B = O(
√

a), X = O(1/
√

a) and Hn−k(X) = O(a0) and we obtain

the asymptotic behaviour 2.3.2. The limit (12) follows from the first term of (8) after

obtaining x(X).

4.4. Proofs of the formulae of Section 2.4

Substitute:

F (x, w) = (1 − w)−a−b−1
3F2

(

(a + b + 1)/2, (a + b + 2)/2,−x
a + 1,−N

∣

∣

∣

∣

− 4w

(1 − w)2

)

and pn(x) =
(−N)nQa,b,N

n (x)

(b + 1)nn!

in the formulae of Section 3.1 to obtain (13).

The function φ(w) = log f(w) verifies Lemma 1 with µ = N , s = 1 and m = 3.

Therefore we have ck = O(N [k/3]). On the other hand, we trivially have B = O(
√

N),

X = O(
√

N) and Hn−k(X) = O(N (n−k)/2) and we obtain the asymptotic behaviour

2.4.2. The limit (16) follows from the first term of (13) after obtaining x(X).

4.5. Proofs of the formulae of Section 2.5

Substitute:

F (x, w) = (1 − w)−c+ix
2F1

(

a + ix, b + ix
a + b

∣

∣

∣

∣

w

)

and pn(x) =
Sa,b,c

n (x2)

(a + b)nn!

in the formulae of Section 3.2 to obtain (17).

The function y(w) = log 2F1

(

a + ix, b + ix
a + b

∣

∣

∣

∣

w

)

satisfies the following differential

equation in the variable w:

w(1 − w)(y + y′2) + (a + b − (a + b + 2ix + 1)w) y′ − (a + ix)(b + ix) = 0.
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Substituting the Maclaurin series of y(w) =
∑∞

1 bkwk into this differential equation, we

obtain

b1 =
(a + ix)(b + ix)

a + b
, b2 = (a+ ix)(b+ ix)

(a + b)(a + b + 2ix + 1) − (a + ix)(b + ix)

2(a + b)2(a + b + 1)

and

bk+1 =
1

(k + 1)(k + a + b)

{

k(k + a + b + 2ix)bk − kbkb1

+
k−2
∑

j=0

(j + 1)bj+1 [(k − j − 1)bk−j−1 − (k − j)bk−j ]

}

.

Then, b1 = O(a), b2 = O(a) and using the above recurrence we can show by induction

over k that bk = O(a) for k > 2. Therefore, the function φ(w) = log f(w) verifies Lemma

1 with µ = a, s = 1 and m = 3. Therefore we have ck = O(a[k/3]). On the other hand

we trivially have A = O(a), X = O(a) and, taking into account that lima→∞ A/X 6= 1,

we have LX
n−k(A) = O(an−k) and we obtain the asymptotic behaviour 2.5.2.
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4.6. Proofs of the formulae of Section 2.6

Substitute:

F (x, w) = (1 − w)N−x
2F1

(

−x,−b − x
a + 1

∣

∣

∣

∣

w

)

and pn(x) =
(−N)nRa,b,N

n (λ(x))

n!

in the formulae of Section 3.2 to obtain (21).

The function φ(w) = log f(w) verifies Lemma 1 with µ = N , s = −1 and m = 3.

Therefore we have ck = O(N−1). On the other hand, we trivially have A = O(N−1),

X = O(N) and LX
n−k(A) = O(Nn−k) and we obtain the asymptotic behaviour 2.6.2.

4.7. Proofs of the formulae of Section 2.7

Substitute:

F (x, w) = (1 − w)1−2(a+b)
3F2

(

a + b − 1
2 , a + b, a + i(b + x)

2a, a + c + i(b + d)

∣

∣

∣

∣

− 4w

(1 − w)2

)

and pn(x) =
(2a + 2b − 1)n

(2a)n(a + b + i(c − b))n
Pα,β,α,β

n (x)

in the formulae of Section 3.2 to obtain (24).

Substituting the Maclaurin series of the logarithm of the above 3F2 function into

its differential equation [10], and following a similar argument as in subsection 4.5 we

find that the Taylor coefficients at w = 0 of the logarithm of the above 3F2 function

are of the order O(b). Therefore, the function φ(w) = log f(w) verifies Lemma 1 with

µ = b, s = 1 and m = 3. Then we have ck = O(b[k/3]). On the other hand, A = O(b),

X = O(b) and LX
0 (A) = O(b0), LX

1 (A) = X + 1 − A = p1(x) = O(b0), and using the

recurrence relation [4]

(n + 1)LX
n+1(A) − (2n + X + 1 − A)LX

n (A) + (n + X)LX
n−1(A) = 0,

we can show by induction over n that LX
n−k(A) = O(b[(n−k)/2]) and we obtain the

asymptotic behaviour 2.7.2.

4.8. Proofs of the formulae of Section 2.8

Substitute:

F (x, w) = (1 − w)−a−b−1
3F2

(

(a + b + 1)/2, (a + b + 2)/2,−x
a + 1,−N

∣

∣

∣

∣

− 4w

(1 − w)2

)

and pn(x) =
(−N)nQa,b,N

n (x)

(b + 1)nn!

in the formulae of Section 3.2 to obtain (26).

The function φ(w) = log f(w) verifies Lemma 1 with µ = N , s = 0 and m = 3. Then

we have ck = O(N0). On the other hand, we trivially have A = O(N0), X = O(N)

and LX
n−k(A) = O(Nn−k) and we obtain the asymptotic behaviour 2.8.2.
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4.9. Proofs of the formulae of Section 2.9

Substitute:

F (x, w) = (1 − w)−c+ix
2F1

(

a + ix, b + ix
a + b

∣

∣

∣

∣

w

)

and pn(x) =
Sa,b,c

n (x2)

(a + b)nn!

in the formulae of Section 3.3 to obtain (28).

From Section 4.5 we have that the coefficients of the Taylor expansion at w = 0

of the logarithm of the above 2F1 function are of the order O(a). Then, the function

φ(w) = log f(w) verifies Lemma 1 with µ = a, s = 1 and m = 3. Then we have

ck = O(a[k/3]). On the other hand, A = O(a), X = O(a) and, taking into account

that lima→∞ A/X 6= 1, we have Cn−k(X, A) = O(a0) and we obtain the asymptotic

behaviour 2.9.2. The limit (31) follows from the first term of (28) after obtaining

x2(X, A) and c(X, A).

4.10. Proofs of the formulae of Section 2.10

Substitute:

F (x, w) = (1 − w)N−x
2F1

(

−x,−b − x
a + 1

∣

∣

∣

∣

w

)

and pn(x) =
(−N)nRa,b,N

n (λ(x))

n!

in the formulae of Section 3.3 to obtain (33).

The function φ(w) = log f(w) verifies Lemma 1 with µ = a, s = −2 and m = 3. Then

we have ck = O(a−2). On the other hand, we trivially have A = O(a−1), X = O(a)

and Cn−k(X, A) = O(a2n−2k) and we obtain the asymptotic behaviour 2.10.2.

4.11. Proofs of the formulae of Section 2.11

Substitute:

F (x, w) = (1 − w)1−2(a+b)
3F2

(

a + b − 1
2 , a + b, a + i(b + x)

2a, a + c + i(b + d)

∣

∣

∣

∣

− 4w

(1 − w)2

)

and pn(x) =
(2a + 2b − 1)n

(2a)n(a + b + i(c − b))n
Pα,β,α,β

n (x)

in the formulae of Section 3.3 to obtain (35).

From Section 4.7, the coefficients of the Taylor expansion at w = 0 of the logarithm

of the above 3F2 function are of the order O(b). Then, the function φ(w) = log f(w)

verifies Lemma 1 with µ = b, s = 1 and m = 3. Therefore we have ck = O(b[k/3]).

On the other hand, A = O(b), X = O(b) and C0(X, A) = 1 = O(b0), C1(X, A) =

(A − X)/A = p1(x)/A = O(b−1), and using the recurrence relation [4]

ACn+1(X, A) + (X − A − n)Cn(X, A) + nCn−1(X, A) = 0,
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we can show by induction over n that Cn−k(X, A) = O(b−[(n+k)/2]) and we obtain the

asymptotic behaviour 2.11.2.

4.12. Proofs of the formulae of Section 2.12

Substitute:

F (x, w) = (1 − w)−a−b−1
3F2

(

(a + b + 1)/2, (a + b + 2)/2,−x
a + 1,−N

∣

∣

∣

∣

− 4w

(1 − w)2

)

and pn(x) =
(−N)nQa,b,N

n (x)

(b + 1)nn!

in the formulae of Section 3.3 to obtain (37).

The function φ(w) = log f(w) verifies Lemma 1 with µ = a, s = 0 and m = 3. Then

we have ck = O(a0). On the other hand, we trivially have A = O(a0), X = O(a) and

Cn−k(X, A) = O(an−k) and we obtain the asymptotic behaviour 2.12.2.

5. Numerical experiments

The following graphics illustrate the approximation supplied by the expansions given

in Section 2. It is worthwhile to note the accuracy obtained in the approximation of

the zeros of the polynomials. In all of the graphics, the degree of the polynomials is

n = 6, dashed lines represent the exact polynomial and continuous lines represent the

first order approximation given by the corresponding expansion.
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Figure 3. Expansion (5) for b = 8. −(N)6R
a,b,N
6 (λ(x)) versus B6H6(X).
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