
1

Asymptotic Expansions of the

Appell’s Function F1

Chelo Ferreira1 and José L. López2
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ABSTRACT

The first Appell’s hypergeometric function F1(a, b, c, d;x, y) is considered for large

values of its variables x and/or y. An integral representation of F1(a, b, c, d;x, y)
is obtained in the form of a generalized Stieltjes transform. Distributional approach

is applied to this integral to derive four asymptotic expansions of this function in

increasing powers of 1/(1−x) and/or 1/(1−y). For certain values of the parameters

a, b, c and d, two of these expansions involve also logarithmic terms in the asymptotic

variables 1−x and/or 1−y. Coefficients of these expansions are given in terms of the

Gauss hypergeometric function 2F1(α, β, γ;x) and its derivative with respect to the

parameter α. All the expansions are accompanied by error bounds for the remainder

at any order of the approximation. These error bounds are obtained from the error

test and, as numerical experiments show, they are considerably accurate.
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1. Introduction

The Appell’s functions F1, F2, F3 and F4 are generalizations of the Gauss hyperge-
ometric function 2F1 [[8], p. 224]. In particular, the first Appell’s function F1 is defined
by means of the double series

F1(a, b, c, d;x, y) ≡
∞∑

k,j=0

(a)k+j(b)k(c)j

(d)k+j

xkyj

k!j!
, |x| < 1, |y| < 1.

Appell’s functions have physical applications in several problems of Quantum Mechanics.
For example, they appear in the computation of transition matrices in atomic and
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molecular physics, such as the transitions that involve Coulombic continuum states [7]
or ion-atom collisions [6]. They are also representations of the generalized Slater’s and
Marvin’s integrals [24] and the solution of certain ordinary differential equations and
partial differential equations [26]. In fact, there is an extensive mathematical literature
devoted to the study of these functions: Sharma has obtained generating functions of
the Appell’s functions [23]. Some integral representations for F1 and F2 have been
derived by Manocha [15] and Mittal [17]. The Laplace transforms of these functions
have been obtained in [10]. Some reduction formulas for special values of the variables
and contiguous relations for Appell’s functions have been investigated by Buschman
[1], [2]. The Lie theory of the Appell’s function F1 has been discussed in [16] and [18].
Carlson has investigated quadratic transformations of Appell’s functions [4] and their
role on multiple averages [3]. A numerical scheme to compute F1 has been developed
in [7] for complex values of the parameters and real values of the variables.

Complete convergent expansions of F1(a, b, c, d;x, y) for large values of x and/or
y may be obtained from the expansions of the R−function derived by Carlson [5].
Although these expansions have an attractively simple structure, explicit computation
of the terms of the expansions is not straightforward and the upper bound on the
truncation error is not quite satisfactory [[5], sec. 5]. On the other hand, series for
F1(a, b, c, d;x, y), except in logarithmic cases, may be obtained from the connection
formulas given by Olsson [19]. The purpose of this paper is to obtain asymptotic
expansions (in the form of a simple series) of F1(a, b, c, d;x, y) for large values of the
variables x and/or y and any (fixed) value of a, b, c, d. We face the challenge of obtaining
easy algorithms to compute the coefficients of these expansions as well as error bounds
at any order of the approximation.

The starting point is the integral representation [[8], p. 230]

F1(a, b, c, d;x, y) ≡ Γ(d)
Γ(d− a)Γ(a)

∫ 1

0

sa−1(1 − s)d−a−1(1 − sx)−b(1 − sy)−cds (1)

where �(a) > 0, �(d− a) > 0, x /∈ [1,∞) if b ≥ 1, and y /∈ [1,∞) if c ≥ 1. This integral
defines the analytical continuation of F1(a, b, c, d;x, y) to the cut complex x or y−planes
C/ \ [1,∞) [[25], p. 30, theorem 2.3].

The first step is to write the above integral as a generalized Stieltjes transform. For
that purpose we perform the change of variable s = (1 + t)−1 in (1), obtaining:

F1(a, b, c, d;x, y) =
Γ(d)

Γ(d− a)Γ(a)

∫ ∞

0

fF
y (t)

(t+ 1 − x)b
dt, (2)

or

F1(a, b, c, d;x, y) =
Γ(d)

Γ(d− a)Γ(a)

∫ ∞

0

fF (t)
(t+ 1 − x)b(t+ 1 − y)c

dt, (3)

where

fF (t) ≡ td−a−1(1 + t)b+c−d, fF
y (t) ≡ fF (t)

(t+ 1 − y)c
. (4)
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Then, up to a factor, the Appell’s function F1 is a generalized Stieltjes transform of
fF (t) or fF

y (t). For �(d − a) > 0, fF (t) is a locally integrable function on [0,∞) and
satisfies

fF (t) =
n−1∑
k=0

AF
k

tk−b−c+a+1
+ fF

n (t), (5)

where

AF
k ≡

(
b+ c− d

k

)
(6)

and fF
n (t) = O(t−n+b+c−a−1) when t→ ∞.

On the other hand, for �(d − a) > 0 and y − 1 /∈ R| + ∪ {0} if �c ≥ 1, fF
y (t) is a

locally integrable function on [0,∞) and satisfies

fF
y (t) =

n−1∑
k=0

BF
k

tk−b+a+1
+ fF

y,n(t), (7)

where

BF
k ≡

k∑
j=0

AF
k−j

(−c
j

)
(1 − y)j (8)

and fF
y,n(t) = O(t−n+b−a−1) when t→ ∞.

Carlson obtained asymptotic expansions of the integrals (2) and (3) for large x

and/or y by using Mellin transform techniques. In this paper we use for the integral
(2) an alternative approach based on the theory of distributions introduced by Wong
[27] [[28], chaps. 5, 6], Estrada [9] and Pilipović et all [21]. This approach has been
generalized in [11] and [14] to be applied to integrals of the form (3). We go a little
bit forward in this paper and, in section 2, we extend the distributional asymptotic
methods for generalized Stieltjes transforms from the case of real parameters to the
case of complex parameters. We include in this section theorems about error bounds.
In section 3 we apply these methods to the integrals (2) and (3), obtaining asymptotic
expansions with error bounds for both: large x and fixed y and large x and y. Several
numerical examples are shown as illustrations. A brief summary and a few comments
are postponed to section 4.



4

2. Distributional approach with complex parameters

Let f(t) be a locally integrable function on [0,∞) which satisfies

f(t) =
n−1∑
k=K

ak

tk+s
+ fn(t), (9)

where K ∈ Z/, 0 < �s ≤ 1, {ak, k = K,K + 1,K + 2, ...} is a sequence of complex
numbers and fn(t) = O(t−n−s) when t→ ∞.

Then, asymptotic expansions (including error bounds) of the generalized Stieltjes
transforms of f(t),

Sf (w; z) ≡
∫ ∞

0

f(t)
(t+ z)w

dt, Sf (w1, w2; z) ≡
∫ ∞

0

f(t)
(t+ xz)w1(t+ yz)w2

dt, (10)

for large z and fixed x and y may be found in [[28], chap. 6], [[21], sec 4.4], [11], [13]
and [14] for real w, w1, w2 and s and complex x, y, z. The purpose of this section is to
generalize the theorems given there to the case of complex w, w1, w2 and s. Therefore,
in the following, we consider that the parameters w, w1, w2, x, y and z are complex and
that f(t) is a locally integrable function on [0,∞) which satisfies (9). In the following,
we use the notation introduced in [28].

2.1. Asymptotic expansion of Sf (w; z) and Sf (w1, w2; z) for large z

We denote by S the space of rapidly decreasing functions and by <Λ, ϕ> the image
of a tempered distribution Λ acting over a function ϕ ∈ S. Since f(t) in (9)-(10) is a
locally integrable function on [0,∞), it defines a distribution f :

< f , ϕ >≡
∫ ∞

0

f(t)ϕ(t)dt.

The distributions associated with t−k−s, k = 0, 1, 2, ..., n− 1 are given by [[28], chap. 5]

< t−k−s
+ , ϕ >≡ 1

(s)k

∫ ∞

0

t−sϕ(k)(t)dt if 0 < �s < 1, (11)

< t−k−s
+ , ϕ >≡ 1

(i	s)k+1

∫ ∞

0

t−i�sϕ(k+1)(t)dt if 1 
= s = 1 + i	s, (12)

where (s)k denotes the Pochhammer’s symbol of s, and

< t−k−1
+ , ϕ >≡ − 1

k!

∫ ∞

0

log(t)ϕ(k+1)(t)dt. (13)

Mention must be made here to the fact that these definitions of the distributions tα
+ are

different from the standard definition given by analytic continuation [12] or by using
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the Hadamard finite part concept [9]. By using these definitions, asymptotic expansions
of Stieltjes transforms (10)(a) for small z may be derived from the moment asymptotic
expansion [[9], p. 135]. In [[21], sec. 4.4] we can find asymptotic expansions of (10)(a)
for large and small z. In the remaining of the paper we use Wong’s definition (11)-(13)
and consider the method constructed from this definition [[28], chap. 6].

To assign a distribution to the function fn(t) introduced in (9), we first define
recursively the k−esim integral fn,k(t) of fn(t) by fn,0(t) ≡ fn(t) and

fn,k+1(t) ≡ −
∫ ∞

t

fn,k(u)du =
(−1)k+1

k!

∫ ∞

t

(u− t)kfn(u)du. (14)

For s 
= 1, it is trivial to show that fn,n(t) is bounded on [0, T ] for any T > 0 and is
O(t−s) as t→ ∞. For s = 1 we have fn,n(t) = O(t−1) as t→ ∞ and fn,n(t) = O(log(t))
as t→ 0+. Therefore, for 0 < �s ≤ 1 we can define the distribution associated to fn(t)
by

< fn, ϕ >≡ (−1)n < fn,n, ϕ
(n) >≡ (−1)n

∫ ∞

0

fn,n(t)ϕ(n)(t)dt.

Once we have assigned a distribution to each function involved in the identity (9),
we are interested in finding an identity (if any) between these distributions. In fact,
this relation is established in the following two lemmas.
Lemma 1. For 0 < �s < 1, n ≥ K + 1, and n ∈ N| , the identity

f =
n−1∑
k=K

akt−k−s
+ +

n−1∑
k=0

(−1)k

k!
M [f ; k + 1]δ(k) + fn

holds for any rapidly decreasing function ϕ ∈ S, where δ is the delta distribution in the
origin and M [f ; k+1] denotes de Mellin transform of f(t):

∫ ∞
0
tkf(t)dt, or its analytic

continuation.
Proof. It is a trivial generalization of [[28], chap 6, lemma 1] from real to complex
values of s. ��
Lemma 2. For �s = 1, n ≥ K + 1 and n ∈ N| , the identity

f =
n−1∑
k=K

akt−k−s
+ +

n−1∑
k=0

(−1)k

k!
bk+1δ

(k) + fn,

holds for any rapidly decreasing function ϕ ∈ S, where, for n = 0, 1, 2, . . .,

bn+1 ≡M [f ;n+ 1] if 	s 
= 0 or

bn+1 ≡ lim
z→n

[
M [f ; z + 1] +

an

z − n

]
+ an(γ + ψ(n+ 1)) if 	s = 0,

(15)

where γ is the Euler constant and ψ the digamma function.
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Proof. Let f0(t) ≡ f(t) − ∑−1
k=K akt

−k−s. Then, for n = 0, 1, 2, . . .,

fn+1(t) = fn(t) − an

tn+s

and
fn+1,n(t) = fn,n(t) − (−1)n an

(s)n

1
ts
.

From this, by integration, it follows that

∫ t

0

fn,n(u)du = fn+1,n+1(t) + (−1)nangn(s, t) + bn+1,

where

gn(s, t) ≡
{

log(t)/n! if 	s = 0
−t−i�s/(i	s)n+1 if 	s 
= 0

and where we have defined the integration constant

bn+1 = − lim
t→0

[fn+1,n+1(t) + (−1)nangn(s, t)] .

From here, the proof is the same as the proofs of lemma 2 and theorem 2 in [[28], chapter
6] from formulas (2.21) and (2.35) respectively: just replace log t by n!gn(s, t) and dn+1

by (−1)nbn+1/n! in those proofs and use the formula

n∑
k=0

(n+ 1 − k)k

(n+ s− k − 1)k+1
=

1
s− 1

,

which follows from [[22], p. 608, eq. 25]. ��
To apply lemmas 1 and 2 to the first integral in (10) we choose a specific function

in S:

ϕη(t) ≡ e−ηt

(t+ z)w
∈ S,

where η > 0 and z /∈ R| − ∪ {0} if �w ≥ 1. We will need also the following lemma.
Lemma 3. Let f(t) verify (9). Then, for 0 < �s ≤ 1, k = 0, 1, 2, ... and n = 1, 2, 3, . . .,
the following identities hold,

lim
η→0

< f , ϕη >=
∫ ∞

0

f(t)
(t+ z)w

dt for �(s+ w) +K > 1,

lim
η→0

< δ, ϕ(k)
η >=

(−1)k(w)k

zk+w
,

lim
η→0

< t−s
+ , ϕ(k)

η >=
(−1)kΓ(k + w + s− 1)Γ(1 − s)

Γ(w)zk+w+s−1
for �(s+w)+k > 1, s 
= 1,
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lim
η→0

< log(t+), ϕ(k+1)
η >=

(−1)k+1

zk+w
(w)k

(
log(z) − γ − ψ(k + w)

)
for �(s+ w) > 0,

lim
η→0

< fn,n, ϕ
(n)
η >= (−1)n(w)n

∫ ∞

0

fn,n(t)
(t+ z)n+w

dt for �(s+ w) + n > 1.

Proof. It is a straightforward generalization of the proofs of [[13], lemma 2.6] and [[14],
lemma 3] from real to complex values of s and w. ��

In order to apply lemmas 1 and 2 to the second integral in (10), we must choose
another particular function of S,

ϕ̄η(t) ≡ e−ηt

(t+ xz)w1(t+ yz)w2
∈ S,

where xz /∈ R| − ∪ {0} if �w1 ≥ 1, yz /∈ R| − ∪ {0} if �w2 ≥ 1 and η > 0. We will need
also the following lemma.
Lemma 4. Let f(t) verify (9). Then, for 0 < �s ≤ 1, k = 0, 1, 2, ... and n = 1, 2, 3, ...,
the following identities hold,

lim
η→0

< f , ϕ̄η >=
∫ ∞

0

f(t)
(t+ xz)w1(t+ yz)w2

dt for �(s+ w1 + w2) +K > 1.

lim
η→0

< δ, ϕ̄(k)
η >=

(−1)k

zk+w1+w2

k∑
j=0

(
k
j

)
(w1)j(w2)k−j

xw1+jyw2+k−j
,

lim
η→0

< t−s
+ , ϕ(k)

η >=
Γ(1 − s)Γ(k + w1 + w2 + s− 1)

Γ(w1 + w2)zk+w1+w2+s−1

(−1)k

xw1+k+s−1yw2
×

F

(
1 − s− k,w2

w1 + w2

∣∣∣∣ 1 − x

y

)
for �(s+ w1 + w2) + k > 1, s 
= 1,

where F
(
α, β
δ

∣∣∣∣ z
)

≡ 2F1(α, β, δ; z) denotes the Gauss hypergeometric function,

lim
η→0

< log(t+),ϕ̄(k+1)
η >=

(−1)k+1

(k + w1 + w2)zk+w1+w2

k+1∑
j=0

(
k + 1
j

)
(w1)j(w2)k+1−j

xw1+j−1yw2+k+1−j
×

[
(log(xz) − γ − ψ(k + w1 + w2))F

(
1, k + 1 + w2 − j
k + 1 + w1 + w2

∣∣∣∣ 1 − x

y

)
+

F ′
(

1, k + 1 + w2 − j
k + 1 + w1 + w2

∣∣∣∣ 1 − x

y

)]
, for �(s+ w1 + w2) > 0,

where F ′
(
α, β
δ

∣∣∣∣ z
)

≡ d
dα F

(
α, β
δ

∣∣∣∣ z
)

and

lim
η→0

< fn,n, ϕ̄
(n)
η >= (−1)n

n∑
j=0

(
n
j

) ∫ ∞

0

(w1)j(w2)n−jfn,n(t)
(t+ xz)j+w1(t+ yz)n−j+w2

dt
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for �(s+ w1 + w2) + n > 1.
Proof. It is a straightforward generalization of the proofs of [[14], lemma 4] from real
to complex values of s, w1 and w2. ��

With these preparations, we are now able to obtain asymptotic expansions of the
integrals (10) for large z in the following theorems.
Theorem 1. Let f(t) be a locally integrable function on [0,∞) which satisfies (9) with
0 < �s ≤ 1, s 
= 1. Then, for z ∈ C/ \ R| − ∪ {0}, �(s+ w) +K > 1 and n = 1, 2, 3, . . .,

∫ ∞

0

f(t)
(t+ z)w

dt =
n−1∑
k=K

(−1)kπakΓ(w + s+ k − 1)
Γ(s+ k)Γ(w) sin(πs)zw+s+k−1

+

n−1∑
k=0

(−1)k(w)kM [f ; k + 1]
k!zk+w

+Rn(w; z).

(16)

The remainder term is defined by

Rn(w; z) ≡ (w)n

∫ ∞

0

fn,n(t)dt
(t+ z)n+w

, (17)

empty sums must be understood as zero and fn,n(t) is defined in (14).
Proof. For �s 
= 1 it follows from lemmas 1 and 3 using the reflection formula of the
gamma function. For �s = 1, from lemmas 2 and 3 we obtain immediately formula
(16). ��
Theorem 2. Let f(t) be a locally integrable function on [0,∞) which satisfies (9) with
s = 1. Then, for z ∈ C/ \ R| − ∪ {0}, �w +K > 0 and n = 1, 2, 3, . . .,

∫ ∞

0

f(t)
(t+ z)w

dt =
−1∑

k=K

ak
Γ(w + k)Γ(−k)

Γ(w)zw+k
+

n−1∑
k=0

(−1)k(w)k

k!zk+w
×

[
ak

(
log(z) − γ − ψ(k + w)

)
+ bk+1

]
+Rn(w; z),

(18)

where, for k = 0, 1, 2, ..., the coefficients bk+1 are given by (15)(b). The remainder term
Rn(w; z) is given in (17).
Proof. From lemmas 2 and 3 we obtain immediately formulas (17) and (18) with bk+1

given in formula (15)(b). ��
Theorem 3. Let f(t) be as in theorem 1. Then, for xz, yz ∈ C/ \R| −∪{0}, �w1,�w2 > 0,
�(s+ w1 + w2) +K > 1 and n = 1, 2, 3, ...,

∫ ∞

0

f(t)
(t+ xz)w1(t+ yz)w2

dt =
n−1∑
k=K

Ak

zw1+w2+s+k−1
+

n−1∑
k=0

Bk

zk+w1+w2
+Rn,s(w1, w2; z),

(19)
where the coefficients Ak and Bk are defined by

Ak ≡ ak
Γ(1 − s− k)Γ(w1 + w2 + s+ k − 1)

Γ(w1 + w2)xw1+s+k−1yw2
F

(
1 − s− k,w2

w1 + w2

∣∣∣∣ 1 − x

y

)
,
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Bk ≡ (−1)kM [f ; k + 1]
k!

k∑
j=0

(
k
j

)
(w1)j(w2)k−j

xw1+jyk+w2−j
,

and empty sums must be understood as zero. The remainder term is defined by

Rn,s(w1, w2; z) ≡
n∑

j=0

(
n
j

)
(w1)j(w2)n−j

∫ ∞

0

fn,n(t)dt
(t+ xz)j+w1(t+ yz)n+w2−j

, (20)

where fn,n(t) is defined in (14).

Proof. It is similar to the proof of theorem 1, but using lemma 4 instead of lemma 3.
��
Theorem 4. Let f(t) be as in theorem 2. Then, for xz, yz ∈ C/ \R| −∪{0}, �w1,�w2 > 0,
�(w1 + w2) +K > 0 and n = 1, 2, 3, ...,

∫ ∞

0

f(t)
(t+ xz)w1(t+ yz)w2

dt =
−1∑

k=K

Ak

zw1+w2+k
+

n−1∑
k=0

(−1)k

k!zk+w1+w2

[
Bk

(
log(xz)−

γ − ψ(k + w1 + w2)
)

+B′
k + Ck

]
+Rn,s(w1, w2; z),

(21)

where empty sums must be understood as zero,

Ak ≡ ak
Γ(−k)Γ(w1 + w2 + k)
Γ(w1 + w2)xw1+kyw2

F

( −k,w2

w1 + w2

∣∣∣∣ 1 − x

y

)
,

Bk ≡ ak

(k + w1 + w2)

k+1∑
j=0

(
k + 1
j

)
(w1)j(w2)k+1−j

xw1+j−1yw2+k+1−j
F

(
1, k + 1 + w2 − j
k + 1 + w1 + w2

∣∣∣∣ 1 − x

y

)
,

B′
k ≡ ak

(k + w1 + w2)

k+1∑
j=0

(
k + 1
j

)
(w1)j(w2)k+1−j

xw1+j−1yw2+k+1−j
F ′

(
1, k + 1 + w2 − j
k + 1 + w1 + w2

∣∣∣∣ 1 − x

y

)
,

and

Ck ≡ bk+1

k∑
j=0

(
k
j

)
(w1)j(w2)k−j

xw1+jyk+w2−j
,

where bk+1 is given in (15)(b). The remainder term Rn,s(w1, w2; z) is given in (20).

Proof. The proof is similar to the proof of theorem 2, but using lemma 4 instead of
lemma 3. ��

2.2. Error bounds

In the following theorem we show that the expansions (16), (18), (19) and (21) given
in the above theorems are in fact asymptotic expansions for large z.
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Theorem 5. In the region of validity of the expansions (16), (18), (19) and (21),
the remainder terms Rn,s(w; z) and Rn,s(w1, w2; z) in these expansions verify,

|Rn,s(w; z)| ≤ Cn

|z|n+�s+�w−1
, |Rn,s(w1, w2; z)| ≤ Cn

|z|n+�(s+w1+w2)−1

if 0 < �s < 1 and

|Rn,s(w; z)| ≤ Cn log |z|
|z|n+�w

, |Rn,s(w1, w2; z)| ≤ Cn log |z|
|z|n+�w1+�w2

if �s = 1, where the constants Cn are independent of |z| (it may depend on the remaining
parameters of the problem).
Proof. It is a straightforward generalization of the proof of [[11], theorem 5] to the case
of complex parameters. ��

The bounds given in theorem 5 are not useful for numerical computations unless we
are able to calculate the constants Cn in terms of the data of the problem (w, w1, w2,
x, y, Arg(z) and f(t)). The property fn(t) = O(t−n−s) as t→ ∞ implies that ∃ t0 > 0
and cn > 0, |fn(t)| ≤ cnt

−n−�s ∀ t ∈ [t0,∞). The following two propositions show that,
if the bound |fn(t)| ≤ cnt

−n−�s holds ∀ t ∈ [0,∞) then, the constants Cn in theorem 5
can be calculated in terms of this constant cn.
Proposition 1. If, for 0 < �s < 1, the remainder fn(t) in the expansion (9) of the
function f(t) satisfies the bound |fn(t)| ≤ cnt

−n−�s ∀ t ∈ [0,∞) for some positive
constant cn then, the remainder Rn,s(w; z) in the expansion (16) satisfies

|Rn,s(w; z)| ≤ cnπ(|w|)nΓ(n+ �w + �s− 1)h(z, w)
Γ(n+ �s)Γ(n+ �w)| sin(π�s)||z|n+�w+�s−1

×

F

(
1 −�s, n+ �s+ �w − 1

(n+ �w + 1)/2

∣∣∣∣ sin2

(
Arg(z)

2

))

and the remainder Rn,s(w1, w2; z) in the expansion (19) satisfies

|Rn,s(w1, w2; z)| ≤cnπ(|w1| + |w2|)nΓ(n+ �(w1 + w2 + s) − 1)h(xz,w1)h(yz, w2)
Γ(n+ �s)Γ(n+ �w1 + �w2)| sin(π�s)||vz|n+�(w1+w2+s)−1

×

F

(
1 −�s, n+ �(s+ w1 + w2) − 1

(n+ �w1 + �w2 + 1)/2

∣∣∣∣ 1
2

(
1 − r

|vz|
))

,

where
v ≡ Min{|x|, |y|}, r ≡ Min{�(xz),�(yz)} (22)

and

h(z, w) ≡
{

1 if Arg(z)	w ≥ 0
e|Arg(z)�w| if Arg(z)	w < 0. (23)
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Proof. Introducing the bound |fn(t)| ≤ cnt
−n−�s in the definition (14) of fn,n(t) we

obtain

|fn,n(t)| ≤ cnΓ(�s)
Γ(n+ �s)t�s

∀ t ∈ [0,∞).

Introducing this bound in the definition (17) of Rn,s(w; z) and using the duplication
formula of the gamma function and [[22], p. 309, eq. 7] we obtain the first bound. The
second bound is obtained using the inequalities |t+ xz|2, |t+ yz|2 ≥ t2 + 2rt+ |vz|2 in
the definition (20) of Rn,s(w1, w2; z), formula [[22], p. 309, eq. 7] and the equality

n∑
k=0

(
n
k

)
(|w1|)k(|w2|)n−k = (|w1| + |w2|)n. (24)

��
Proposition 2. If, for �s = 1, each remainder fn(t) in the expansion (9) of the func-
tion f(t) satisfies the bound |fn(t)| ≤ cnt

−n−1 ∀ t ∈ [0,∞) for some positive constant
cn then, the remainder Rn,s(w; z) in the expansions (16) and (18) satisfies

|Rn,s(w; z)| ≤ c̄nπ(|w|)nΓ(n+ �w − 1/2)h(z, w)
Γ(n+ 1/2)Γ(n+ �w)|z|n+�w−1/2

×

F

(
1/2, n+ �w − 1/2
(n+ �w + 1)/2

∣∣∣∣ sin2

(
Arg(z)

2

))
≡ R(1)

n (w; z),
(25)

where c̄n ≡Max{cn, cn−1 + |an−1|} and

|Rn,s(w; z)| ≤ (|w|)n

|z|n+�w

{
ε(cn−1 + |an−1|) + cn
(n− 1)!Θ(z, ε)n+�w

+
cn
n!

∣∣∣1 +
ε

z

∣∣∣−n−�w
[
log |z|+

(n+ �w)[(2ε+ �z + |�z|)(|z|−1 − 1) + (|�z| − �z) log |z|]
2(n+ �w + 1)|z + ε| H1+

4ε+ �z + |�z| − 2ε|z|
2ε(n+ �w + 1)|z| H0 +

2|ε+ z|H−1

ε((n+ �w)2 − 1)|z|
]}

h(z, w) ≡ R(2)
n (w; z),

(26)

where ε is an arbitrary positive number,

Hm ≡ F

(
2 −m,n+ �w +m

(n+ �w + 3)/2

∣∣∣∣ sin2

(
Arg(z + ε)

2

))
(27)

and

Θ(z, ε) ≡
⎧⎨
⎩

1 if �z ≥ 0
| sin(Arg(z)| if ε ≥ −�z > 0.
|1 + ε/z| if −�z > ε > 0.

(28)

For large z and fixed n, the optimum value for ε is given approximately by

ε2 =
cn

n(cn−1 + |an−1|)
[

2H−1

(n+ �w)2 − 1
+

(�z + |�z|)H0

2(n+ �w + 1)|z|
]
. (29)
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The remainder Rn,s(w1, w2; z) in expansions (19) and (21) satisfies

|Rn,s(w1, w2; z)| ≤ R(i)
n (w1 + w2;xz) + R(i)

n (w1 + w2; yz), (30)

With either i = 1 or i = 2. If x, y, z, w, w1 and w2 are positive real numbers, then

|Rn,s(w; z)| ≤ [
nε(cn−1 + |an−1|) + cn

(
Sn(z, ε, w) + Tn(z, ε, w)

)] (w)n

n!zn+w
, (31)

where ε is again an arbitrary positive number,

Sn(z, ε, w) ≡ Min

{
nz

[
(ε+ z)n+w−1 − zn+w−1

]
ε(n+ w − 1)(ε+ z)n+w−1

, ψ(n+ 1) + γ

}

and

Tn(z, ε, w) ≡ zn+w

(n+ w)(ε+ z)n+w
F

(
n+ w, 1;n+ w + 1;

z

ε+ z

)
.

For large z and fixed n, the optimum value for ε is given by

ε =
cn

n(cn−1 + |an−1|) . (32)

The remainder Rn,s(w1, w2; z) in expansions (19) and (21) satisfies the bound (31)
replacing w by w1 + w2 and z by vz, with v ≡Min{|x|, |y|}.
Proof. From |fn−1(t)| ≤ cn−1t

−n and fn(t) = fn−1(t) − an−1t
−n ∀ t ∈ [0,∞), n ∈ N| ,

we obtain |fn(t)| ≤ (cn−1+|an−1|)t−n ∀ t ∈ [0,∞). In order to obtain the bound (26) we
divide the integral defining fn,n(t) in (14) by a fixed point u = ε ≥ t and use the bound
|fn(t)| ≤ (cn−1 + |an−1|)t−n in the integral over [t, ε] and the bound |fn(t)| ≤ cnt

−n−1

in the integral over [ε,∞). Using u− t ≤ u in the integral over [t, ε] we obtain

|fn,n(t)| ≤ 1
(n− 1)!

[
(cn−1 + |an−1|) log

(ε
t

)
+
cn
ε

]
∀ t ∈ [0, ε], ε > 0. (33)

On the other hand, ∀ t ∈ [0,∞) we introduce the bound |fn(t)| ≤ cnt
−n−1 in the integral

definition of fn,n(t) and perform the change of variable u = tv. We obtain

|fn,n(t)| ≤ cn
n!

1
t

∀ t ∈ [0,∞). (34)

We divide the integral in the right hand side of (17) at the point t = ε and use the
bound (34) in the integral over [ε,∞) and the bound (33) in the integral over [0, ε]. We
obtain

|Rn,s(w; z)| ≤ (|w|)n

n!

[
ncn

∫ 1

0

dt

|εt+ z|n+�w
+ cn

∫ ∞

1

dt

t|εt+ z|n+�w
+

nε(cn−1 + |an−1|)
∫ 1

0

log(t−1)dt
|εt+ z|n+�w

]
h(z, w).

(35)
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Removing a factor |z|n+�w from the denominator in the integrand of the first and third
integrals in the right hand side of (35) and using the bound |εt/z+1| ≥ Θ(z, ε) we easily
obtain that those two integrals are bounded by (|z|Θ(z, ε))−n−�w. On the other hand,
we perform the change of variable t→ |z|t in the second integral in the right hand side
of (35) and integrate by parts to obtain

|z|n+�w

∫ ∞

1

dt

t|εt+ z|n+�w
=

log |z|
|1 + ε/z|n+�w

+

ε(n+ �w)
∫ ∞

|z|−1

(εt+ cos(Arg(z))) log tdt
[(εt+ cos(Arg(z)))2 + sin2(Arg(z))](n+�w)/2+1

.

Now, with the change of variable t→ t/ε+ |z|−1 and using − log |z| ≤ log(t/ε+ |z|−1) ≤
t/ε+ |z|−1 − 1 ∀ t ∈ [0,∞) and [[22], p. 309, eq. 7] we obtain (26).

To obtain (25) we use |fn(t)| ≤ cnt
−n−1 and |fn(t)| ≤ (cn−1 + |an−1|)t−n. Then, we

have fn(t) ≤ cnt
−n−1/2 if t ≥ 1 and fn(t) ≤ (cn−1 + |an−1|)t−n−1/2 if t ≤ 1. Therefore,

fn(t) ≤ c̄nt
−n−1/2 ∀ t ∈ [0,∞). Then, fn(t) satisfies the bound required in proposition

1 with �s = 1/2 and cn replaced by c̄n. Repeating now the calculations of the proof of
proposition 1 we obtain (25).

If we get rid of irrelevant terms for large z, the right hand side of (26), as function
of ε, has a minimum for ε given in (29).

Bounds (30) are obtained using the inequality |t + xz|−�w1 |t + yz|−�w2 ≤ |t +
xz|−�w1−�w2 + |t+ yz|−�w1−�w2 in the definition (20) of Rn,s(w1, w2; z) and formulas
(24), (25) and (26).

Bounds (31)-(32) and the bound for Rn,1(w1, w2; z) for real positive x, y, w, w1, w2

and z have been obtained in [[14], propositions 2 and 4]. ��
The following two lemmas introduce two families of functions f(t) which verify the

bound |fn(t)| ≤ cnt
−n−�s ∀ t ∈ [0,∞). Moreover, for these functions f(t), the constants

cn can be easily obtained from f(t).
Lemma 5. Suppose f(t) verifies (9) with �s > 0 and consider the function g(u) ≡
u−s−Kf(u−1). If g(z) is a bounded analytic function in the region W of the complex
z−plane comprised by the points situated at a distance < σ from the positive real axis
(see fig. 1), then,

|fn(t)| ≤ Cr−nt−n−�s,

where C is a bound of |g(z)| in W and 0 < r < σ.
Proof. From the asymptotic expansion (9) and the Lagrange formula for the remainder
in the Taylor expansion of g(u) at u = 0, we have

g(u) =
n−1∑
k=0

aku
k +Rn(u),

where

Rn(u) =
1
n!

dng(u)
dun

∣∣∣∣
u=ξ

un, ξ ∈ (0, u).
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Using the Cauchy formula for the derivative of an analytic function,

dng(u)
dun

=
n!
2πi

∫
C

g(z)
(z − ξ)n+1

dz,

where C is a circle of radius r around ξ contained into the region W . Then, for fixed ξ
and r, performing the change of variable z = ξ + reiθ, and using |g(ξ + reiθ)| ≤ C for
θ ∈ [0, 2π) with C independent of θ, r and ξ, we obtain the wished result. ��

Im(w)

Re(w)

u

r
σ

σ
ξ(u)

Figure 1. Analyticity region W for the function g(z) considered in lemma 5. The integration

variable u in (14) is real and unbounded and therefore, the analyticity region for g(z) must contain

the positive real axis. The circle of radius r centered at ξ(u), with 0 < ξ(u) < u, used in the

proof of lemma 5 must be contained in this region and therefore, r < σ.

Lemma 6. If the expansion (9) verifies the error test, then

|fn(t)| ≤ |an|t−n−�s and |fn(t)| ≤ |an−1|t−(n−1)−�s.

Proof. A proof of the first inequality can be found in [[20], p. 68]. The second inequality
follows from the first one, from sign(fn(t)) 
= sign(fn−1(t)) and

fn(t) = fn−1(t) − an−1

tn−1+s
.

��
Corollary 1. If f(t) verifies the hypotheses of lemma 5, then Rn,s(w; z) and
Rn,s(w1, w2; z) satisfy the bounds given in propositions 1 and 2 with cn = Cr−n. More-
over, the expansions given in theorems 1 and 2 are convergent when the parameter |z|
is longer than the inverse of the width of the region considered in lemma 5 (see figure
1): when σ|z| ≥ 1 if �w < 1 or σ|z| > 1 if �w ≥ 1. The expansions given in theorems
3 and 4 are convergent when the parameter |vz|, with v ≡Min{|x|, |y|}, is longer than
the inverse of the width of that region: when σ|vz| ≥ 1 if �w1 + �w2 < 1 or σ|vz| > 1
if �w1 + �w2 ≥ 1.
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For �s = 1, the convergence of these expansions requires also that limn→∞ nw−1anz
−n =

0 or limn→∞ nw1+w2−1an(vz)−n = 0 respectively.
Corollary 2. If the expansion (9) of f(t) verifies the error test, then Rn(w; z) and
Rn,s(w1, w2; z) satisfy the bounds given in propositions 1 and 2 replacing cn by |an| and
cn−1 by 0. Moreover, the expansions given in theorems 1 and 2 are convergent when
the coefficients an in the asymptotic expansion (9) verify limn→∞ nw−1anz

−n = 0. The
expansions given in theorems 3 and 4 are convergent when limn→∞ nw1+w2−1an(vz)−n =
0, v ≡Min{|x|, |y|}.

3. Asymptotic expansions of the Appell’s function F1

In order to obtain asymptotic expansions of F1(a, b, c, d;x, y) for |x| → ∞ and/or
|y| → ∞ we just apply theorems 1-4 to the integrals (2) or (3). Error bounds for the
remainders are obtained from corollaries 1 and 2.
Corollary 3. For �a > 0, �(d−a) > 0, 1+a−b /∈ Z/, |Arg(z)| < π and y−1 /∈ R| +∪{0}
if �c ≥ 1,

F1(a, b, c, d;1 − z, y) =
Γ(d)

Γ(d− a)Γ(a)

{
n−1∑
k=0

Γ(b+ k)
Γ(b)

(−1)kBk

k!zk+b
+

π(−1)K

Γ(b) sin(πs)

n−K−1∑
k=0

(−1)kΓ(k + a)
Γ(k − b+ a+ 1)

BF
k

zk+a
+Rn(a, b, c, d; z, y)

}
,

(36)

where K ≡ Int(�(1 − b + a)) (Int(x) means the integer part of x) and the coefficients
BF

k are defined in (8). Coefficients Bk are given by

Bk ≡ Γ(k + d− a)Γ(a− k − b)
Γ(d− b)(1 − y)c

F

(
c, k + d− a

d− b

∣∣∣∣ y

y − 1

)
. (37)

If �(1 + a− b) /∈ Z/ and n ≥ 0, a bound for the remainder is given by

|Rn(a, b, c, d; z, y)| ≤ cnπ(|b|)nΓ(n+ �(b+ s) − 1)h(z, b)
Γ(n+ �s)Γ(n+ �b)| sin(π�s)||z|n+�(b+s)−1

×

F

(
1 −�s, n+ �(s+ b) − 1

(n+ �b+ 1)/2

∣∣∣∣ sin2

(
Arg(z)

2

))
,

(38)

where s ≡ 1 + a − b −K and h(z, b) was defined in (23). We can take cn = |BF
n−K | if

the following conditions over the parameters hold:

a, b, c, d ∈ R| , b+ c− d ≤ 0, c ≥ 0, �(1 − y) > 0. (39)

In any case, we can take cn = Cyr
−n, where

Cy ≥ Supu∈W

∣∣(1 + u)b+c−d(1 + (1 − y)u)−c
∣∣ , (40)
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W is the region considered in lemma 5 for g(u) = ub−a−1fF
y (u−1) with

0 < r < Min
{
1, |1 − y|−1ξ(c)

}
, ξ(c) ≡

{
1 if c /∈ Z/− ∪ {0}

+∞ if c ∈ Z/− ∪ {0}. (41)

On the other hand, if �(1 + a − b) ∈ Z/ and n ≥ 0, n ∈ N| , two bounds for the
remainder are given by

|Rn(a, b, c, d; z, y)| ≤ c̄nπ(|b|)nΓ(n+ �b− 1/2)h(z, b)
Γ(n+ 1/2)Γ(n+ �b)|z|n+�b−1/2

×

F

(
1/2, n+ �b− 1/2
(n+ �b+ 1)/2

∣∣∣∣ sin2

(
Arg(z)

2

))
≡ R(1)

n (BF
n , b; z)

(42)

and

|Rn(a, b, c, d; z, y)| ≤ (|b|)n

|z|n+�b

{
cn
n!

∣∣∣1 +
ε

z

∣∣∣−n−�b
[
log |z|+

(n+ �b)[(2ε+ �z + |�z|)(|z|−1 − 1) + (|�z| − �z) log |z|]
2(n+ �b+ 1)|z + ε| H1+

4ε+ �z + |�z| − 2ε|z|
2ε(n+ �b+ 1)|z| H0 +

2|ε+ z|
ε((n+ �b)2 − 1)|z|H−1

]
+

ε(cn−1 + |BF
n−K−1|) + cn

(n− 1)!Θ(z, ε)n+�b

}
h(z, b) ≡ R(2)

n (Cyr
−n, BF

n , b; z).

(43)

In these formulas, c̄n =Max{|BF
n−K |, |BF

n−K−1|} with cn = |BF
n−K | and cn−1 = 0 if

conditions (39) hold. In any case, we can take c̄n =Max{cn, cn−1 + |BF
n−K−1|}, with

cn = Cyr
−n given above. In (43), ε is an arbitrary positive number, Θ(z, ε) is given

in (28) and Hk is given in (27) setting w = b. For large z and fixed n, the optimum
value for ε is given approximately by (29) setting w = b. Moreover, the expansion (36)
is convergent when Max{|1 − y|ξ(c)−1, 1} < |z|.
Proof. To obtain the expansion (36), just apply theorem 1 to the integral (2) with
f(t) = fF

y (t) given in (4), ak = BF
k−K given in (8), w = b and s and K given above.

After the change of variable t = u(1 − u)−1, the mellin transform of fF
y (t) reads

M [fF
y ; k + 1] = (1 − y)−c

∫ 1

0

uk+d−a−1

(1 − u)k+b−a+1

(
1 +

y

1 − y
u

)−c

du.

Then, the first term in (37) follows from [[22], p. 306, eq. 5].
If (39) holds, then, by [[13], lemmas 3 and 4], the function fF

y (t) verifies the error
test. Therefore, by corollary 2, the remainder in the expansion (36) verifies the bounds
given in propositions 1 and 2 with cn = |BF

n−K |, cn−1 = 0. In any case, by lemma 5 and
corollary 1, the remainder in the expansion (36) verifies the bounds given in propositions
1 and 2 with cn = Cyr

−n, Cy and r verifying (40) and (41) respectively. Therefore, the
bounds (38), (42) and (43) hold.
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Using (41) and introducing in (38) and (42) the bound

|BF
n | ≤M

∣∣∣∣
(
b− d
n

)∣∣∣∣ [
Max

{
1, |1 − y|ξ(c)−1

}]n
,

where M is a constant independent of n, we obtain that limn→∞Rn(a, b, c, d; z, y) = 0
if Max{|1 − y|ξ(c)−1, 1} < |z|. ��
Corollary 4. For �a, �(d − a) > 0, y − 1 /∈ R| + ∪ {0} if �c ≥ 1, 1 + a − b ∈ Z/ and
|Arg(z)| < π,

F1(a, b, c, d; 1 − z, y) =
Γ(d)

Γ(d− a)Γ(a)

{
b−a−1∑

k=0

BF
k

Γ(k + a)Γ(b− k − a)
Γ(b)zk+a

+

n−1∑
k=0

(−1)k(b)k

k!zk+b

[
BF

k+b−a

(
log(z) − γ − ψ(k + b)

)
+Bk

]
+Rn(a, b, c, d; z, y)

}
,

(44)

where the coefficients BF
k are given in (8) and the coefficients Bk are given by

Bk ≡BF
k+b−a (γ + ψ(k + 1)) +

(−1)k+b−a−1Γ(k + d− a)
Γ(d− b)(k + b− a)!(1 − y)c

×{
[ψ(k + d− a) − ψ(k + b− a+ 1)]F

(
c, k + d− a

d− b

∣∣∣∣ y

y − 1

)
+

F ′
(
c, k + d− a

d− b

∣∣∣∣ y

y − 1

) }
.

(45)

For n ∈ N| , two bounds for the remainder are given by (42) and (43) in corollary 3
replacing BF

n−K by BF
n−a+b. And again, the expansion (44) is convergent if Max{|1 −

y|ξ(c)−1, 1} < |z|, where ξ(c) is defined in (41).
Proof. To obtain the expansion (44), just apply theorem 2 to the integral (2) with
f(t) = fF

y (t) given in (4), s = 1, K = a− b, ak = BF
k+b−a and w = b.

On the other hand, the coefficients BF
k in the expansion (7) of fF

y (t) may be written

BF
k =

1
k!
dk

dtk
[
tb−a−1fF

y (t−1)
]
t=0

.

Using the Cauchy formula for the derivative of an analytic function, we obtain

BF
k+b−a =

dk+b−a

dtk+b−a

[
tk(1 − t)b−a−1

(k + b− a)!
fF

y

(
t

1 − t

)]
t=1

. (46)

The coefficient Bn in (44) is just bn+1 given by (15)(b) with an = BF
n+b−a. The Mellin

transform in formula (15)(b) is given by (37). When z → n, there are two singular
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terms in this limit: BF
n+b−a/(z − n) and B(z + d − a, a − z − b). Setting z = n + η,

expanding these terms at η = 0 and using (46) we obtain (45).
The bounds (42) and (43) are obtained as in corollary 3 (but using only proposition 2).
��
Corollary 5. For �a > 0, �(d − a) > 0, 1 + a − b − c /∈ Z/, |Arg(xz)| < π and
|Arg(yz)| < π,

F1(a, b, c, d; 1 − xz, 1 − yz) =
Γ(d)

Γ(d− a)Γ(a)

{
n−1∑
k=0

(−1)kBk

k!zk+b+c
+

n−K−1∑
k=0

Γ(b+ c− a− k)Γ(a+ k)
Γ(b+ c)xa+k−cyczk+a

AF
k F

(
b+ c− a− k, c

b+ c

∣∣∣∣1 − x

y

)
+

Rn(a, b, c, d;xz, yz)} ,

(47)

where K ≡ Int(�(1 + a− b− c)) and the coefficients AF
k are defined in (6). Coefficients

Bk are given by

Bk ≡ Γ(k + d− a)Γ(a− k − b− c)
Γ(d− b− c)

k∑
j=0

(
k

j

)
(b)j(c)k−j

xb+jyk+c−j
. (48)

If �(1 + a− b− c) /∈ Z/ and n ≥ 0, a bound for the remainder is given by

|Rn(a, b, c, d;xz, yz)| ≤ cnπ(|b| + |c|)nΓ(n+ �(b+ c+ s) − 1)h(xz, b)h(yz, c)
Γ(n+ �s)Γ(n+ �(b+ c))| sin(π�s)||vz|n+�(b+c+s)−1

×

F

(
1 −�s, n+ �(s+ b+ c) − 1

(n+ �(b+ c) + 1)/2

∣∣∣∣ 1
2

(
1 − r

|vz|
))

,

(49)

where s ≡ 1 + a− b− c−K, h(z, w) was defined in (23) and r and v where defined in
(22).

In formula (49) we can take cn = |AF
n−K | if a, b, c, d ∈ R| and b+ c− d ≤ 0. In any

case, we can take cn = C, where

C > Supu∈W

∣∣(1 + u)b+c−d
∣∣ (50)

and W is the region considered in lemma 5 for g(u) = ub+c−a−1fF (u−1).
On the other hand, if �(1+a−b−c) ∈ Z/ and n ≥ 0, the remainder in the expansion

(47) satisfies

|Rn(a, b, c, d;xz, yz)| ≤ R(1)
n (AF

n , b+ c; 1 − xz) + R(1)
n (AF

n , b+ c; 1 − yz) (51)

or

|Rn(a, b, c, d;xz, yz)| ≤ R(2)
n (C,AF

n , b+ c; 1 − xz) + R(2)
n (C,AF

n , b+ c; 1 − yz) (52)
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where R(1)
n and R(2)

n are given in (42) and (43). Moreover, the expansion (47) is
convergent if v|z| > 1.
Proof. To obtain the expansion (47), just apply theorem 3 to the integral (3) with
f(t) = fF (t) given in (4), ak = AF

k−K given in (6), w1 = b, w2 = c and s and K

given above. The calculation of coefficient Ck in formula (19) of theorem 3 requires the
calculation of the Mellin transform M [fF ; k+1]. After trivial manipulations, and using
the integral representation of the Beta function, we obtain M [fF ; k + 1] = B(k + d −
a, a− k − b− c) and (48) follows.

If a, b, c, d ∈ R| and b+ c− d ≤ 0 holds, then, by [[13], lemmas 3 and 4], the function
fF (t) verifies the error test. Therefore, by corollary 2, the remainder in the expansion
(47) verifies the bounds given in propositions 1 and 2 with cn = |AF

n−K |, cn−1 = 0. In
any case, by lemma 5 and corollary 1, the remainder in the expansion (47) verifies the
bounds given in formula (30) of proposition 2 with w1 = b, w2 = c, r = 1 and cn = C,
C verifying (50). Therefore, the bound (51) holds.

Finally, using the same argument that we used at the end of the proof of the corollary
3, we obtain that, if |xz| > 1 and |yz| > 1, then limn→∞R

(i)
n = 0 and therefore,

limn→∞Rn(a, b, c, d;xz, yz) = 0. ��
Corollary 6. For �a > 0, �(d − a) > 0, 1 + a − b − c ∈ Z/, |Arg(xz)| < π and
|Arg(yz)| < π,

F1(a, b, c, d;1 − xz, 1 − yz) =
Γ(d)

Γ(d− a)Γ(a)

{
n−1∑
k=0

(−1)kCk+1

k!zk+b+c
+

b+c−a−1∑
k=0

Γ(b+ c− a− k)Γ(a+ k)AF
k

Γ(b+ c)xk+a−cycza+k
F

(
b+ c− a− k, c

b+ c

∣∣∣∣ 1 − x

y

)
+

n−1∑
k=0

(−1)kAF
k+b+c−a

k!(k + b+ c)zk+b+c

[
Bk

(
log(xz) − γ − ψ(k + b+ c)

)
+B′

k

]
+

Rn(a, b, c, d;xz, yz)} ,

(53)

where coefficients AF
k are given in (6) and coefficients Bk, B′

k and Ck+1 are given by

Bk ≡
k+1∑
j=0

(
k + 1
j

)
(b)j(c)k+1−j

xb+j−1yc+k+1−j
F

(
1, k + 1 + c− j

k + 1 + b+ c

∣∣∣∣ 1 − x

y

)
,

B′
k ≡

k+1∑
j=0

(
k + 1
j

)
(b)j(c)k+1−j

xb+j−1yc+k+1−j
F ′

(
1, k + 1 + c− j

k + 1 + b+ c

∣∣∣∣ 1 − x

y

)

and

Ck+1 ≡
{

Γ(k + d− a)(−1)k+b+c−a−1

(k + b+ c− a)!Γ(d− b− c)
(ψ(k + d− a) − ψ(k + b+ c− a+ 1)) +

AF
k+b+c−a (γ + ψ(k + 1))

}
×

k∑
j=0

(
k

j

)
(b)j(c)k−j

xb+jyk+c−j
.

(54)
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respectively.

The remainder in the expansion (53) satisfies the bounds (51) and (52). Moreover,
the expansion (53) is convergent if |xz| > 1 and |yz| > 1.

Proof. To obtain the expansion (53), just apply theorem 4 to the integral (3) with
f(t) = fF (t) given in (4), s = 1, K = a− b− c, ak = AF

k+b+c−a, w1 = b and w2 = c.

On the other hand, the coefficients AF
k in the expansion (5) of fF (t) may be written

AF
k =

1
k!
dk

dtk
[
tb+c−a−1fF (t−1)

]
t=0

.

Using the Cauchy formula for the derivative of an analytic function, we obtain

AF
k+b+c−a =

dk+b+c−a

dtk+b+c−a

[
tk(1 − t)b+c−a−1

(k + b+ c− a)!
fF

(
t

1 − t

)]
t=1

. (55)

Coefficients Cn+1 in (53) are given by bn+1 in (15)(b) with an = AF
n+b+c−a. The Mellin

transform in formula (15)(b) is given by (48). When z → n, there are two singular
terms in the limit in (15)(b): AF

n+b+c−a/(z−n) and B(z+ d− a, a− z− b− c). Setting
z = n+ η, expanding these terms at η = 0 and using (55) we obtain (54).

The bound (51) are obtained as in corollary 5. ��

3.1. Numerical experiments

The following tables show numerical experiments performed with the program math-
ematica about the approximation and the accuracy of the error bounds supplied by corol-
laries 3-6. In these tables, the second column represents the integral F1(a, b, c, d;x, y).
The third and sixth columns represent the approximation given by corollaries 3, 4, 5 or
6 for n = 2 and n = 3 respectively. Fourth and seventh columns represent the respective
relative errors, and fifth and last columns are the respective relative error bounds given
in those corollaries. The c.p.u. time used by mathematica to compute a ”correct” value
of F1 (by an undisclosed method) is of the order of 1 second, whereas the time used by
mathematica to compute an approximation, including its error bound, is of the order
of 10−2 seconds.

Parameter values: a = 1.5, b = 2.05, c = 1, d = 3.25, y = −0.9

Second or. Relative Relative Third or. Relative Relative

x F1 approx. error er. bound approx. error er. bound

-10 0.0192501 0.01395848 0.275 0.39 0.01790552 0.07 0.097
-20 0.00870325 0.00810254 0.069 0.09 0.00862363 0.0091 0.0117
-50 0.00274596 0.00271654 0.0107 0.012 0.00274436 5.8e-4 6.84e-4
-100 0.00108523 0.00108241 0.0026 0.0029 0.00108515 7.13e-5 8.e-5
-200 0.000414904 0.000414641 6.35e-4 6.93e-4 0.0004149 8.73e-6 9.46e-6

Table 1: Approximation supplied by (36) and error bounds given by (38).
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Parameter values: a = 1.5, b = 4.05, c = 1, d = 1.75, y = −0.9,Arg(x) = −3π/4

First or. Relative Relative Second or. Relative Relative

|x| F1 approx. error er. bound approx. error er. bound

20 0.00080787 - 0.000831 - 0.012 0.068 0.00081234 - 0.0022 0.007
0.0019668i 0.0019555i 0.001968i

50 0.00020672 - 0.0002077 - 0.002 0.029 0.00020679 - 1.4e-4 0.001
0.000498i 0.0004976i 0.000498i

100 7.31557e-5 - 7.324337e-5 - 5.e-4 0.01 7.315886e-5 - 1.78e-5 3.2e-4
1.76271e-4i 1.76234e-4i 1.762723e-4i

200 2.58616e-5 - 2.586926e-5 - 1.2e-4 0.007 2.58616e-5 - 1.e-6 8.e-5
6.23597e-5i 6.235645e-5i 6.23597e-5i

300 1.40754e-5 - 1.407729e-5 - 5.5e-5 0.005 1.40754e-5 - 3.3e-7 3.7e-5
3.39519e-5i 3.395107e-5i 3.395186e-5i

Table 2: Approximation supplied by (36) and error bounds given by (38).

Parameter values: a = 1 − 0.5i, b = 3 + i, c = 3, d = 3, y = −0.5

Second or. Relative Relative Third or. Relative Relative

x F1 approx. error er. bound approx. error er. bound

-10 0.00395015 + 0.00393933 + 0.0083 0.083 0.00392435 + 0.0023 0.0236
0.0241468i 0.024349i 0.0241975i

-20 -0.00150212 + -0.0015046 + 0.0011 0.0087 -0.00150328 + 1.6e-4 1.29e-3
0.012645i 0.012659i 0.0126466i

-50 -0.00263747 + -0.0026376 + 6.97e-5 3.95e-4 -0.00263748 + 4.e-6 2.41e-5
0.00448026i 0.004486i 0.00448027i

-100 -0.00198698 + -0.00198699 + 8.5e-6 3.6e-5 -0.00198698 + 2.48e-7 1.12e-6
0.00169895i 0.00169896i 0.00169895i

-200 -0.00122261 + -0.00122261 + 1.06e-6 3.27e-6 -0.0012226 + 1.58e-8 5.1e-8
4.71985e-4i 4.71986e-4i 4.71985e-4i

Table 3: Approximation supplied by (36) and error bounds given by Min{(42),(43)}.
Parameter values: a = 2, b = 3, c = 3, d = 2.5, y = −0.9

Second or. Relative Relative Third or. Relative Relative

x F1 approx. error er. bound approx. error er. bound

-10 0.00289672 0.00376548 0.3 0.885 0.00324391 0.12 0.3
-20 8.73402e-4 9.17957e-4 0.051 0.16 8.826362e-4 0.01 0.029
-50 1.64142e-4 1.6486e-4 0.0044 0.016 1.64202e-4 0.0004 0.0012
-100 4.42497e-5 4.42786e-5 6.52e-4 0.0027 4.42509e-5 2.76e-5 1.e-4
-200 1.1611e-5 1.1612e-5 9.5e-5 4.6e-4 1.1610998e-5 2.01e-6 8.7e-6

Table 4: Approximation supplied by (44) and error bounds given by Min{(42),(43)}.

4. Conclusions

Asymptotic expansions of generalized Stieltjes transforms for complex values of the
parameters have been derived in section 2, including error bounds. They extend to
the complex case the known methods given in [27], [[28], chap. 6], [13], [14] for real
parameters. Using these methods we have derived four expansions of the first Appell’s
hypergeometric function F1 in corollaries 3-6, including error bounds for the remainder.
Moreover, these expansions are convergent when the asymptotic variable is large enough.
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Parameter values: a = 2, b = 3, c = 3, d = 2.5, y = −0.9,Arg(x) = −π/2

Second or. Relative Relative Third or.. Relative Relative

|x| F1 approx. error er. bound approx. error er. bound

10 -0.00313761 - -0.00182859 - 0.4 1.8 -0.00335547 - 0.18 0.7
0.00155835i 0.00215644i 0.00214796i

20 -9.57456e-4 - -9.127204e-4 - 0.06 0.29 -9.66098e-4 - 0.013 0.058
3.17093e-4i 3.58223e-4i 3.270276i

50 -1.77437e-4 - -1.76966e-4 - 0.0047 0.027 -1.77498e-4 - 4.e-4 0.0022
3.31918e-5i 3.39021e-5i 3.323225e-5i

100 -4.69382e-4 - -4.692343e-4 - 6.8e-4 0.0047 -4.69394e-4 - 2.9e-5 1.9e-4
5.51933e-6i 5.548144e-6i 5.519946e-6i

200 -1.20975e-5 - -1.20971e-5 - 9.9e-5 8.12e-4 -1.20976e-5 - 2.08e-6 1.6e-5
8.70185e-7i 8.712899e-7i 8.701947e-7i

Table 5: Approximation supplied by (44) and error bounds given by Min{(42),(43)}.

Parameter values: a = 1.5, b = 0.05, c = 2, d = 4

Second or. Relative Relative Third or. Relative Relative

x, y F1 approx. error er. bound approx. error er. bound

-10,-25 0.00669952 0.00646809 0.034 0.78 0.00668157 0.0027 0.13
-20,-40 0.00370763 0.00365988 0.013 0.15 0.00370534 0.0006 0.013
-50,-65 0.00194611 0.00193718 0.0046 0.012 0.00194585 1.3e-4 4.6e-4
-100,-200 4.232485e-4 4.230478e-4 4.7e-4 0.005 4.232466e-4 4.62e-6 9.8e-5
-200,-350 1.908408e-4 1.908122e-4 1.5e-4 0.001 1.908406e-4 8.26e-7 9.86e-6

Table 6: Approximation supplied by (47) and error bounds given by (49).

Parameter values: a = 2.5, b = 4.05, c = 1, d = 3,Arg(x) = −3π/4, Arg(y) = 0

Second or. Relative Relative Third or. Relative Relative

|x|, y F1 approx. error er. bound approx. error er. bound

10, -15 -1.1346201e-6 - -1.322963e-6 - 9.25e-4 1.8e-3 -1.1455236e-6 - 7.e-5 1.5e-4
0.000204246i 0.00020423i 0.000204237i

20, -20 -1.42374e-6 - -1.43107e-6 - 1.7e-4 2.4e-4 -1.42395e-6 - 7.2e-6 1.e-5
4.316887e-5i 4.316743e-5i 4.316865e-5i

50, -55 -6.266874e-9 - -6.313751e-9 - 1.2e-5 1.8e-5 -6.267419e-9 - 2.e-7 3.4e-7
4.072453e-4i 4.07244e-4i 4.072453e-4i

100, -110 2.791197e-9 - 2.790133e-9 - 1.56e-6 2.45e-6 2.79119e-9 - 1.46e-8 2.23e-8
7.151052e-7i 7.151048e-7i 7.151051e-7i

150, -200 7.346265e-9 - 7.346172e-9 - 4.23e-7 8.e-7 7.346265e-9 - 2.8e-9 5.e-9
2.337076e-7i 2.3374e-7i 2.3374e-7i

Table 7: Approximation supplied by (47) and error bounds given by (49).

When the parameters defining the function f(t) or fy(t) in the integral representation
of the Appell’s function F1 (equations (2) and (3) respectively) verify the conditions
given in (39) then, f(t) or fy(t) belong to a special kind of functions: the remainder
term in their asymptotic expansion in inverse powers of t satisfies the error test. This
fundamental property allows us to use corollary 2 to derive a more accurate error bound
for the remainder in the asymptotic expansions of F1 given in corollaries 3-6. These
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Parameter values: a = 2 + i, b = 2 − 1.5i, c = 1, d = 3

Second or. Relative Relative Third or. Relative Relative

x, y F1 approx. error er. bound approx. error er. bound

-10, -15 0.0001248 - 0.0001224 - 0.009 0.2 0.0001246 - 0.0008 0.006
0.0003i 0.000298i 0.0002999i

-20, -40 -3.04309e-5 - -3.04379e-5 - 0.002 0.04 -3.04308e-5 - 9.8e-5 7.e-4
7.e-5i 7.e-5i 6.9838e-5i

-50, -65 -1.357482e-5 - -1.357084e-5 - 4.8e-4 0.005 -1.357474e-5 - 9.5e-6 3.16e-5
7.414746e-6i 7.408461e-6i 7.414624e-6i

-100, -130 -3.78267e-6 + -3.78222e-6 + 1.2e-4 9.3e-4 -3.78266e-6 + 1.2e-6 2.9e-6
7.694256e-7i 7.69585e-7i 7.694369e-7i

-200, -250 -6.362044e-7 + -6.361753e-7 + 3.e-5 1.7e-4 -6.362043e-7 + 1.6e-7 2.7e-7
7.622805e-7i 7.6227e-7i 7.622805e-7i

Table 8: Approximation supplied by (47) and error bounds given by Min{(51), (52)}.
Parameter values: a = 2 + i, b = 3 − 1.5i, c = 1, d = 4,Arg(x) = −π/2,Arg(y) = π

Second or. Relative Relative Third or. Relative Relative

|x|, |y| F1 approx. error er. bound approx. error er. bound

10, 15 -0.0004909 + -0.0004903 + 0.001 0.3 -0.0004908 + 0.0001 0.06
0.00079287i 0.00079364i 0.00079279i

20, 40 3.774639e-5 + 3.7774e-5 + 0.0001 0.03 3.774621e-5 + 7.4e-6 0.003
2.095e-4i 2.094998-4i 2.094987-4i

50, 65 3.78677223-5 + 3.78679583-5 + 9.4e-6 1.e-3 3.78677137-5 + 2.12e-7 5.e-5
2.0116287e-5i 2.0115959e-5i 2.0116282e-5i

100, 130 1.058444e-5 - 1.058444e-5 - 1.18e-6 1.e-4 1.058444e-5 - 1.3e-8 2.2e-6
2.2504918e-6i 2.250504e-6i 2.2504917e-6i

200, 250 1.7122688e-6 - 1.7122686e-6 - 1.5e-7 9.4e-6 1.7122688e-6 - 9.e-10 9.89e-8
2.169836e-6i 2.169836e-6i 2.169836e-6i

Table 9: Approximation supplied by (47) and error bounds given by Min{(51), (52)}.
Parameter values: a = 2, b = 1, c = 1, d = 3.2

Second or. Relative Relative Third or. Relative Relative

x, y F1 approx. error er. bound approx. error er. bound

-50, -70 0.0055576 0.005437717 0.02 0.1 0.00554541 0.002 0.004
-100, -200 0.0001827 0.000182648 2.7e-4 0.0017 0.0001827 3.2e-6 6.e-6
-500, -650 1.5569377e-5 1.55691513e-5 1.4e-5 9.7e-5 1.55693768e-5 3.7e-8 6.6e-8
-1000, -1100 5.1555639e-6 5.1555424e-6 4.1e-6 3.2e-5 5.1555638e-6 5.8e-9 1.1e-8
-1500, -2000 2.0549834e-6 2.05498025e-6 1.5e-6 1.5e-5 2.0549834e-6 1.3e-9 3.5e-9

Table 10: Approximation supplied by (53) and error bounds given by Min{(51),(52)}.

bounds have been obtained from the error test and, as numerical computations show
(see tables 1-11), they exhibit a remarkable accuracy.
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Parameter values: a = 2, b = 1, c = 1, d = 3.3,Arg(x) = −4π/5,Arg(y) = 0

Second or. Relative Relative Third or. Relative Relative

|x|, |y| F1 approx. error er. bound approx. error er. bound

100, 150 1.998863e-4 - 1.99866499e-4 - 3.5e-4 0.0018 1.998865e-4 - 4.e-6 6.26e-6
1.16859e-4i 1.167804e-4i 1.1685818e-4i

200, 250 6.9458999e-5 - 6.94566577e-5 - 9-87e-5 5.3e-4 6.9459004e-5 - 5.99e-7 9.3e-7
4.2285549e-5i 4.227787e-5i 4.22855e-5i

500, 565 1.473406e-5 - 1.4733969e-5 - 1.68e-5 1.e-4 1.473406e-5 - 4.2e-8 8.e-8
9.28714e-6i 9.28686e-6i 9.28714e-6i

1000, 1060 4.4257489e-6 - 4.42574127e-6 - 4.4e-6 4.e-5 4.4257489e-6 - 5.65e-9 1.34e-8
2.8438858e-6i 2.843864e-6i 2.8438858e-6i

1500, 1550 2.153354e-6 - 2.1533524e-6 - 2.e-6 1.9e-5 2.153354e-6 - 1.7e-9 4.67e-9
1.396248e-6i 1.39624e-6i 1.3962485e-6i

Table 11: Approximation supplied by (53) and error bounds given by Min{(51),(52)}.
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