Fifteenth International Conference Zaragoza-Pau on Mathematics and its Applications Jaca, September 10–12th 2018

On a nonlocal Stochastic PDE

Guy Vallet¹, Ujjwal Koley²

SUMMARY

Let $(\Omega, \mathbb{P}, \mathcal{F}, {\mathcal{F}_t}_{t\geq 0})$ be a filtered probability space satisfying the usual hypothesis i.e., ${\mathcal{F}_t}_{t\geq 0}$ is a right-continuous filtration such that \mathcal{F}_0 contains all the \mathbb{P} -null subsets of (Ω, \mathcal{F}) . We are interested in the existence an uniqueness of an entropy $L^2(\mathbb{R}^d)$ -valued predictable process $u(t, \cdot)$ which satisfies the Cauchy problem

 $du + \mathcal{L}_{\lambda}\phi(u) - \operatorname{div}\vec{f}(u)\,dt = h(u)\,dW(t) \quad \text{in } Q, \qquad u(t=0) = u_0 \quad \text{in } \mathbb{R}^d,$

where $Q = \mathbb{R}^d \times (0,T)$ with T > 0 fixed, $u_0(x)$ is the given initial function, \mathcal{L}_{λ} is the λ -fractional Laplace operator, $\vec{f} : \mathbb{R} \mapsto \mathbb{R}^d$, $\phi, h : \mathbb{R} \mapsto \mathbb{R}$ are a given (sufficiently smooth) functions and W(t) is a real valued Brownian noise.

Keywords: Stochastic problems, entropy solution, fractional operators

AMS Classification: 60H15, 35R11, 35L65

¹LMAP University of Pau et des Pays de l'Adour email: guy.vallet@univ-pau.fr

²Center App. Maths of Bangalore TIFR email: ujjwal@tifrbng.res.in