Stabilized mixed methods for convection-diffusion problems

María González ${ }^{1}$, Magdalena Strugaru ${ }^{2}$

Abstract

SUMMARY We are interested in the numerical approximation of the solution to the scalar convectiondiffusion equation in mixed form. This problem was previously analyzed by Douglas and Roberts [1], Jaffre [4] and Thomas [5]. One of the difficulties that arise is the need that the discrete subspaces satisfy the discrete inf-sup condition. We will present stabilized dual-mixed finite element methods that allow to avoid this requirement. We will explore the existence and uniqueness of a solution to the stabilized mixed formulation, and the derivation of a priori and a posteriori error estimates. Numerical experiments illustrating the performance of the method will be shown.

Keywords: convection-diffusion, mixed finite element, stabilization, a posteriori error estimates

AMS Classification: 65N30, 65N12, 65N15

References

[1] J. Douglas and J. Roberts. Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44(169), 39-52, 1985.
[2] M. González, J. Jansson and S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. In Dynamical Systems and Differential Equations, AIMS Proceedings. Proceedings of the 10th AIMS International Conference (Madrid, Spain) 2015, M. de León, W. Feng, Z. Feng, X. Lu, J. M. Martell, J. Parcet, D. Peralta-Salas and W. Ruan (eds.), 525-532. AIMS, 2015.
[3] M. González and M. Strugaru. Stabilization and a posteriori error analysis of a mixed FEM for convection-diffusion problems with mixed boundary conditions. Submitted, 2018.
[4] J. Jaffre. Décéntrage et élements finis mixtes pour les équations de diffusionconvection. Calcolo 21(2), 171-197, 1984.
[5] J. M. Thomas. Mixed Finite Elements Methods for Convection-Diffffusion Problems. In Numerical Approximation of Partial Differential Equations, E. L. Ortiz (eds.), 241-250. Elsevier Science Publishers B. V. (North Holland), 1987.

[^0]
[^0]: ${ }^{1}$ Departamento de Matemáticas
 Universidade da Coruña
 email: maria.gonzalez.taboada@udc.es
 ${ }^{2}$ Basque Center of Applied Mathematics
 email: mstrugaru@bcamath.org

