Fifteenth International Conference Zaragoza-Pau on Mathematics and its Applications Jaca, September 10–12th 2018

Stabilized mixed methods for convection-diffusion problems

María González¹, Magdalena Strugaru²

SUMMARY

We are interested in the numerical approximation of the solution to the scalar convectiondiffusion equation in mixed form. This problem was previously analyzed by Douglas and Roberts [1], Jaffre [4] and Thomas [5]. One of the difficulties that arise is the need that the discrete subspaces satisfy the discrete inf-sup condition. We will present stabilized dual-mixed finite element methods that allow to avoid this requirement. We will explore the existence and uniqueness of a solution to the stabilized mixed formulation, and the derivation of a priori and a posteriori error estimates. Numerical experiments illustrating the performance of the method will be shown.

Keywords: convection-diffusion, mixed finite element, stabilization, a posteriori error estimates

AMS Classification: 65N30, 65N12, 65N15

References

- J. DOUGLAS AND J. ROBERTS. Global estimates for mixed methods for second order elliptic equations. *Math. Comp.* 44(169), 39–52, 1985.
- [2] M. GONZÁLEZ, J. JANSSON AND S. KOROTOV. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. In *Dynamical Systems and Differential Equations, AIMS Proceedings. Proceedings of the 10th AIMS International Conference* (*Madrid, Spain*) 2015, M. de León, W. Feng, Z. Feng, X. Lu, J. M. Martell, J. Parcet, D. Peralta-Salas and W. Ruan (eds.), 525–532. AIMS, 2015.
- [3] M. GONZÁLEZ AND M. STRUGARU. Stabilization and a posteriori error analysis of a mixed FEM for convection-diffusion problems with mixed boundary conditions. Submitted, 2018.
- [4] J. JAFFRE. Décéntrage et élements finis mixtes pour les équations de diffusionconvection. Calcolo 21(2), 171–197, 1984.
- [5] J. M. THOMAS. Mixed Finite Elements Methods for Convection-Difffusion Problems. In Numerical Approximation of Partial Differential Equations, E. L. Ortiz (eds.), 241–250. Elsevier Science Publishers B. V. (North Holland), 1987.

¹Departamento de Matemáticas Universidade da Coruña email: maria.gonzalez.taboada@udc.es

²Basque Center of Applied Mathematics email: mstrugaru@bcamath.org